English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718096      Online Users : 588
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 期刊論文 >  Item 140.119/135849
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/135849


    Title: 媒體情緒於企業違約預警:基於公開資訊語意分析
    Media Sentiment in Corporate Default Prediction: Using Semantic Analysis of Public Information
    Authors: 江彌修;呂朋怡;黃立新;陳威光
    Chiang, Mi-hsiu;Lu, Peng-i;Huang, Li-xin;Chen, Wei-kuang
    Contributors: 金融系
    Keywords: 情感分析;媒體情緒量化指標;企業違約預警;最適臨界值
    Sentiment analysis;Quantitative indicators of media sentiment;Corporate default prediction;Optimal threshold
    Date: 2021-08
    Issue Date: 2021-06-17 15:42:14 (UTC+8)
    Abstract: 本文建立基於公開新聞資訊媒體情緒量化指標的企業違約預警模型。採用美 國多數著名報社之新聞文本,我們以 VADER 的文字探勘技術萃取攸關企業信用 風險之資訊內涵,進而構建基於情感傾向、強度以及新聞報導量的媒體情緒量化 指標 (SENTI)。羅吉斯迴歸模型之下的實證結果顯示,納入媒體情緒量化指標能 有效提升模型違約預警的準確度。特別地,本文發現公開新聞資訊之負向報導有 助於降低財務危機企業被誤判為不具財務危機企業的可能(其模型之型一誤差從 而降低),進一步的數值結果更表明,誤差極小化之下所求取的最適違約判別臨 界值,能有效降低型一誤差從而產生更優化的實質損失分類預測效果,此研究發 現呼應了 Begley et al. (1996)的實證結果。
    This paper proposes a corporate default prediction model where media sentiment is derived from public news. Using prevalent news media of several major newspaper publishers in the U.S., we apply the VADER (Valence Aware Dictionary for sEntiment Reasoning) text mining technique to extract information that associate with the firms’ default risk, and the SENTI indicator—characterized by the news contents’ emotion tendency, intensity, and coverage—is then derived to quantify media sentiment. Our logistic regression results show that, incorporating SENTI can enhance the accuracy performance of corporate default prediction. In particular, with negative media sentiment, a lower probability of the model in predicting default firms as non-default ones can be observed - resulting in the model’s Type-I forecasting error being decreased accordingly. Further numerical evidence confirms that, when adopting an optimal threshold subject to minimized errors, a significant decrease in Type-I error can be arrived at, giving rise to the best classification forecasts of default loss scenarios. This finding is consistent with that of Begley et al. (1996).
    Relation: 期貨與選擇權學刊, Vol.14, No.2, pp.83-130
    Data Type: article
    Appears in Collections:[金融學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    132.pdf1485KbAdobe PDF2290View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback