政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/131510
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51935397      線上人數 : 607
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/131510
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/131510


    題名: 建構輔以機器學習的技術交易動能策略
    Constructing Technical Trading Momentum Strategies Using Machine Learning
    作者: 郭汶靖
    Kuo, Wen-Ching
    貢獻者: 江彌修
    Chiang, Mi-Hsiu
    郭汶靖
    Kuo, Wen-Ching
    關鍵詞: 機器學習
    邏輯斯回歸演算法
    技術交易
    投資人情緒指標
    動能策略
    交易訊號
    市場擇時
    Machine Learning
    Logistic regression algorithm
    Technical trading
    Investor sentiment indicator
    Momentum strategy
    Trading signal
    Market timing
    日期: 2020
    上傳時間: 2020-09-02 11:50:09 (UTC+8)
    摘要: 金融時間序列的非定態特性使得預測未來股價非常困難。但精準預測股價並不是投資獲利的唯一方法。股價趨勢相對容易掌握,即交易訊號的預測較易被實踐。只要投資人可以精準擇時,在正確的時間點進行買賣交易,皆可因此而獲利。本研究以邏輯斯回歸演算法加入技術交易與投資人情緒指標建構機器學習模型產生交易訊號,希望藉由不同特徵值提升模型之市場擇時能力,以正確捕捉股市動能。另外,本研究亦針對空頭市場時各策略之表現以及策略是否有降低投資風險的效果進行討論,並針對捕捉不同天期之動能探討策略績效。
    The non-stationary feature of financial time series makes the prediction of future stock price harder. However, predicting stock price correctly is not the only way to get return from investing. The trend of stock price is easier to control, which means predicting trading signals is likely to put to practice. As long as investor is able to time the market perfectly and make the right trading decision, making profit is no longer difficult. In our study, we apply technical trading indicators and investors sentiment indicator to logistic regression algorithm to build a machine learning model in order to predict trading signals. We intend to improve the model ability of timing market via importing different features. Furthermore, we discuss about the performance of different strategies and if they lower down the investment risk when facing bear market. We also talk about the performance of different strategies by capturing momentum of different time horizons in further discussion.
    參考文獻: 1. Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. 1998, A Model of Investor Sentiment, Journal of Financial Economics 49 (3): 307-343
    2. Daniel, K. D., D. Hirshleifer, and A. Subrahmanyam, 1998, Investor psychology and security market under- and over-reactions, Journal of Finance 53, 1839–1886.
    3. Fama, Eugene F., 1970, Efficient Capital Markets:A Review of Theory and Empirical Work, Journal of Finance 25,383-417.
    4. Fama, Eugene F., 1965, The behavior of stock-market prices, The Journal of Business 38, 34-105.
    5. Gerwin A. W. Griffioen, 2003, Technical Analysis in Financial Markets, University of Amsterdam - Faculty of Economics and Business (FEB),pp. 322
    6. Jegadeesh, Narasimhan, and Sheridan Titman, 1993, Returns to buying winners and selling losers: Implications for stock market efficiency, Journal of Finance 48, 65-91.
    7. Jegadeesh, Narasimhan, and Sheridan Titman, 2001, Profitability of momentum strategies: An evaluation of alternative explanations, Journal of Finance 56, 699-720.
    8. K. J. Hong, S. Satchell, 2015, Time Series Momentum Trading Strategy and Autocorrelation Amplification, Quantitative Finance, volume 15, issue 9, p.1471 - 1487
    9. Lee A. Smales, 2016, Risk-On/Risk-Off: Financial Market Response to Investor Fear, Finance Research Letters, Vol. 17, 2016
    10. Olivier C., Blaise Pascal, 2007, Neural network modeling for stock movement prediction, state of art, Journal of Computer Engineering and Technology, 10(3), pp. 20-30
    11. Ramon Lawrence, 1997, Using Neural Networks to Forecast Stock Market Prices, Course Project, University of Manitoba
    12. Simon Fong, Jackie Tai, Yain Whar Si , 2011,Trend Following Algorithms for Technical Trading in Stock Market, Journal of emerging technologies in web intelligence, vol.3, no.2
    13. Smales, Lee A., 2017. The importance of fear: investor sentiment and stock market returns, Applied Economics, 49 (34): pp. 3395-3421
    14. Subhadra Kompella and Kalyana Chakravarthy Chilukuri Chakravarthy Chilukuri, 2019, Stock Market Prediction Using Machine Learning Methods, International
    15. T. Kimoto, K. Asakawa, M. Yoda, M. Takeoka,1990, Stock market prediction system with modular neural networks, IJCNN International Joint Conference on Neural Networks
    16. White, H., K. Hornik and M. Stinchcombe, 1992, Artificial Neural Networks, Blackwell Publishers 
    描述: 碩士
    國立政治大學
    金融學系
    107352025
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107352025
    資料類型: thesis
    DOI: 10.6814/NCCU202001706
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    202501.pdf2315KbAdobe PDF28檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋