English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52613758      Online Users : 849
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/131504
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131504


    Title: 市場風險資本計提標準法與預期損失各模型之比較分析: GARCH、T-GARCH、AP-ARCH、POT與類神經網路模型
    The Standardized Approach to Market Risk Capital Requirement and the Comparative Analysis of Models in Expected Shortfall Methods: GARCH、T-GARCH、AP-ARCH、POT and Neural Network
    Authors: 林朝陽
    Lin, Chao-Yang
    Contributors: 林士貴
    Lin, Shih-Kuei
    林朝陽
    Lin, Chao-Yang
    Keywords: 交易簿基礎原則審視(FRTB)
    預期損失
    風險值
    類神經網路
    循環類神經網路
    Fundamental Review of the Trading Book(FRTB)
    Expected Shortfall
    Value at Risk
    GARCH
    T-GARCH
    AP-ARCH
    POT
    Neural Networks
    Recurrent Neural Networks
    Date: 2020
    Issue Date: 2020-09-02 11:48:42 (UTC+8)
    Abstract: 2023年1月1日交易簿基礎原則審視(FRTB)實行日,此新計提方法對全球金融機構資本適足率將造成衝擊,標準法或內部模型法都有重大改變,本研究首先將台灣的銀行市場風險與資本計提資料進行整理分析,結果高市場風險資產不一定有高投資績效,並實例試算標準法;內部模型法則用GARCH、T-GARCH、AP-ARCH和極值理論POT各預期損失模型分析,最後將模型資料導入機器學習估計預期損失。結果可得2006年以前匯率、權益和利率因子,有多個信賴水準下可用一般風險值(VaR)估計,且預期損失有過於保守的問題,使實際低於理論失敗率過多無法通過檢定,但到了次貸風暴之後,僅有匯率因子可用一般風險值估計外,權益和利率因子多適用預期損失模型或條件後風險值,表示近幾年的各種金融資產報酬率分配需考慮厚尾、偏態和極端值情形,若用風險值模型需再考慮各條件的厚尾和偏斜分配,亦或採用預期損失模型。另在金融事件期間中,條件預期損失和風險值,以AP-ARCH為最適模型條件,考慮分配的模型,則是搭配歷史(HS)分配和POT為最適次數最多。最後RNN可結合各模型優缺點,訓練出更為精準的預期損失模型,以解決傳統模型須作分配假設和非線性估計的問題。
    On January 1, 2023 is the Fundamental Review of the Trading Book (FRTB) implementation date. This New Basel Capital Accord will impact the capital adequacy ratio of global financial institutions. Both the standardized and the Internal Model Approach have major changes. This study will first introduce Taiwan bank`s capital accord data. As a result, high market risk assets do not necessarily have high investment performance.Then we trial to calculate new Standardized Method; Expected Shortfall of the Internal Model Approach are analyzed with GARCH, T-GARCH, AP-ARCH and POT models, and finally the model data is imported into machine learning to estimate Expected Shortfall.
    As a result, we can obtain foreign exchange, equity and interest rate factors before 2006. They can be used to estimate the Value at Risk (VaR), and the Expected Shortfall is too conservative, but after the Financial Crisis, only the foreign exchange factor can be used VaR. The equity and interest rate factors mostly apply the Expected Shortfall or condition VaR, indicating that the distribution of various financial asset returns in recent years needs to consider fat-tailed、skewness and extreme values, if the VaR is used, the fat-tailed and skewed distribution of each condition must be considered, or the Expected Shortfall may be used. In addition, during the period of Financial Crisis, AP-ARCH is the most suitable model for Expected Shortfall and conditional VaR. Considering the allocation model, the history (HS) and POT are the most suitable allocation. Finally, RNN can combine the advantages and disadvantages of each model to train a more accurate Expected Shortfall to solve the problem that the traditional model must make allocation assumptions and nonlinear estimation.
    Reference: 中文部分:
    1.巴曙松、劉曉依、朱元倩,(2018)。巴塞爾III:金融監管的十年重構,中國:中國金融出版社。
    2.朱君亞,(2018)。金融壓力事件預警模型類神經網路、支援向量機與羅吉斯迴歸之比較,國立政治大學,金融學系研究所,台北。
    3.李佩蓮,(2012)。銀行資本管理,國立中山大學,財務管理學系研究所,高雄。
    4.林昆立、吳庭斌,(2012)。新巴塞爾資本協定三大支柱與銀行風險的關係:全球實證。管理學報,29(2),121-153。
    5.林金鈴,(2004)。銀行資本風險之評估─風險值與期望尾端損失值(ETL)之應用,國立中興大學,企業管理學系研究所,台中。
    6.林靖宜,(2014)。運用關連結構模型及重點抽樣法估計投資組合的期望損失,國立中山大學,應用數學系研究所,高雄。
    7.林楚雄、高子荃、邱瓊儀,(2005)。結合GARCH模型與極值理論的風險值模型,管理學報,22(1),133-154。
    8.林朝陽,(2019)。新市場風險資本計提-交易簿基礎原則審視(FRTB)之方法說明與整理,貨幣觀測與信用評等139期。
    9.柯博倫、雷立芬,(2011)。GARCH估測風險值(VaR)績效之探討,台灣銀行季刊,62(4),234-243。
    10.洪儒瑤、古永嘉、康健廷,(2006)。ARMA-GARCH風險值模型預測績效實證,中華技術學院學報,(34),13-35。
    11.郭照榮、李宜熹、陳勤明,(2013)。Basel Ⅲ對金融穩定及貨幣政策之影響。中央銀行季刊,35(2),11-59。
    12.許郁甄,(2009)。新巴塞爾資本協定與衍生性金融商品操作影響本國銀行業經營效率之實證研究-應用資料包絡分析法,國立政治大學,商管專業學院碩士學位學程,台北。
    13.許力夫,(2018)。以類神經網路建構風險值模型,國立政治大學,應用數學系研究所,台北。
    14.黃朝熙、鍾經樊、謝依珊和周卉敏,(2018)。本國銀行業資本結構分析--跨越循環期的槓桿比率與資本適足率比較,中央銀行季刊,40(3),15-50。
    15.黃御綸,(2004)。極值理論與整合風險衡量,國立政治大學,金融學系研究所,台北
    16.黃瑞峰,(2016)。銀行風險管理與資本管理之技術與運用,台灣土地銀行出國報告。
    17.陳學華、楊輝耀,(2003)。應用極值理論和APARCH模型估測股市風險,中華管理評論國際學報,6(5)。
    18.陳嘉敏,(2007)。衡量銀行市場風險-VaR與ETL模型的應用,國立政治大學,金融學系研究所,台北。
    19.楊奕農,(2009)。時間序列分析經濟與財務上之應用,第二版,台北:雙葉書廊。
    20.葉怡成,(2003)。類神經網路模式應用與實作,台北:儒林圖書有限公司。
    21.葉家易、林朝陽,(2020)。新市場風險FRTB標準法試算與說明,貨幣觀測與信用評等143期。
    22.廖偉真、雷立芬,(2010)。不同樣本頻率之股市波動性探討-GARCH、T-GARCH與EGARCH之比較,台灣銀行季刊,61(4),294-307。
    23.鄭政秉、梁連文、陳仁屏,(2015)。模擬BASEL III新資本監管對台灣銀行業成本效率之影響,管理與系統(TSSCI期刊),22(2),175-203。


    英文部分:
    1.Artzner, P., Delbaen, F., Eber, J. M., and Heath, D., (1997). Thinking Coherently, Risk, 10 (11), 68-71.
    2.Bollerslev, Tim, (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, Vol. 31(3), 307-327.
    3.Bali, T. G., Gokcan, S. & Liang, B., (2007). Value at risk and the cross-section of hedge fund returns, Journal of Banking and Finance, 31(4), 1135–1166.
    4.Basel Committee on Banking Supervision, (1993). The Supervisory Treatment of Market Risks, Bank for International Settlemen
    5.Basel Committee of Banking Supervision (1996). Overview of the Amendment to the Capital Accord to Incorporate Market Risks, Bank for International Settlemen.
    6.Basel Committee of Banking Supervision (1996). Modifications to the Market Risk Amendment, Bank for International Settlemen.
    7.Basel Committee of Banking Supervision (2005). The Application of Basel II to Trading Activities and the Treatment of Double Default Effects, Bank for International Settlemen.
    8.Basel Committee of Banking Supervision (2005). Amendment to the Capital Accord to incorporate market risks, Bank for International Settlemen.
    9.Basel Committee of Banking Supervision, (2006). International Convergence of Capital Measurement and Capital Standards-A Revised Framework, Bank for International Settlemen.
    10.Basel Committee on Banking Supervision, (2007). Guidelines for Computing Capital for Incremental Default Risk in the TradingBook, Bank for International Settlements.
    11.Basel Committee on Banking Supervision, (2008). Proposed revisions to the Basel II market riskframework, Bank for International Settlements.
    12.Basel Committee on Banking Supervision, (2009). Revisions to the Basel II market risk framework, Bank for International Settlements.
    13.Basel Committee on Banking Supervision, (2009). Guidelines for computing capital for incremental risk in the trading book, Bank for International Settlements.
    14.Basel Committee on Banking Supervision, (2010). Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems, Bank for International Settlements.
    15.Basel Committee on Banking Supervision, (2011). Revisions to the Basel II Market Risk Framework, Bank for International Settlements.
    16.Basel Committee on Banking Supervision, (2012). Fundamental Review of the Trading Book, Bank for International Settlements.
    17.Basel Committee on Banking Supervision, (2012). Revisions to the Basel Securitisation Framework, Bank for International Settlements.
    18.Basel Committee on Banking Supervision, (2013). Regulatory Consistency Assessment Programme (RCAP) – Analysis of Risk-Weighted Assets for Market Risk, Bank for International Settlements.
    19.Basel Committee on Banking Supervision, (2015). Fundamental Review of the Trading Book: Outstanding Issues, Bank for International Settlements.
    20.Basel Committee on Banking Supervision, (2015). Fundamental Review of the Trading Book-Interim Impact Analysis, Bank for International Settlements.
    21.Basel Committee on Banking Supervision, (2016). Standards Minimum Capital Requirements for Market Risk, Bank for International Settlements.
    22.Basel Committee on Banking Supervision, (2017). Frequently Asked Questions on Market Risk Capital Requirements, Bank for International Settlements.
    23.Basel Committee on Banking Supervision, (2017). Simplified Alternative to the Standardised Approach to Market Risk Capital Requirements, Bank for International Settlements.
    24.Basel Committee on Banking Supervision, (2017). Basel III: Finalising Post-Crisis Reforms, Bank for International Settlements.
    25.Basel Committee on Banking Supervision, (2018). Revisions to the Minimum Capital Requirements for Market Risk, Bank for International Settlements.
    26.Basel Committee on Banking Supervision, (rev. February 2019). Minimum Capital Requirements for Market Risk, Bank for International Settlements.
    27.Basel Committee on Banking Supervision, (2020). Measures to Reflect the Impact of Covid-19, Bank for International Settlements.
    28.Chen, C.T., Chang, H.C., Hsieh, C.S., (2009). Forecasting Value at Risk (VaR) in the futures market using Hybrid method of Neural Networks and GARCH model, International Joint Conference on Computational Sciences and Optimization: 17-21.
    29.Christoffersen, P.F. (1998). Evaluating interval forecasts, International Economic Review, 39, 841-862.
    30.Ding, Z., Granger, C. W. J. and Engle, R. F., (1993). A Long Memory Property of Stock Market Returns and a New Model, Journal of Empirical Finance, 1, 83-106.
    31.Donaldson, R.G. and Kamstra, M., (1996). Forecast Combining with Neural Networks, Journal of Forecasting, 15, 49-61.
    32.Embrechts, P., Klüppelberg, C., and Mikosch, T., (1997). Modelling extremal events for insurance and finance, Springer, Berlin.
    33.Engle, R. F., (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50(4), 987-1007.
    34.Garbade, K., (1986). Assessing Risk and Capital Adequacy for Treasury Securities, Topics in Money and Securities Markets, Bankers Trust.
    35.Giot, P. and Laurent, S., (2003). Value-at-Risk for Long and Short Trading Positions, Journal of Applied Econometrics, 18, 641-664.
    36.Graves, A., (2012). Supervised sequence labelling with recurrent neural networks, Heidelberg: Springer.
    37.Gerlach, R., Chen and Cathy, W. S., (2016). Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range, Journal of Financial Econometrics 14(1).
    38.Kmenta, J., (1986). Elements of Econometrics, New York: Macmillan (2th).
    39.Kupiec, P.H., (1995). Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives, 3, 73–84.
    40.Liu, Y., (2005). Value-at-Risk Model Combination Using Artificial Neural Networks, United States: Emory University.
    41.Longin, F. M, (1996). The Asymptotic Distribution of Extreme Stock Market Returns, Journal of business, 69 (3), 383-408.
    42.McNeil, A. J. and Frey, R., (2000). Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach, Journal of Empirical Finance, 7(3)-(4), 271-300.
    43.McCulloch, W. S. and Pitts, W., (1943). A logical calculus of ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5, 115-133.
    44.Meng, X. and Taylor, J. W., (2019). Estimating value-at-risk and expected shortfall using the intraday low and range data, European Journal of Operational Research, 280 (1), 191-202.
    45.Meng, Q., Chen, W., Wang, Y., Ma Z. M., Liu, T. Y., (2017). Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling, arXiv preprint arXiv: 1709. 10432.
    46.Morgan, J.P., (1996). Risk Metrics technology document (4th).
    47.Nieppola, O., (2009). Backtesting Value at Risk Model, Master’s Thesis in Economics, Helsinki School of Economic.
    48.Ng, A., (2011): Ufldl Tutorial on Neural Networks. Ufldl Tutorial on Neural Networks retrieved from, http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial.
    49.Paul, S. and Sharma, P., (2017). Improved VaR forecasts using extreme value theory with the Realized GARCH model, Studies in Economics and Finance, Emerald Group Publishing, 34(2), 238-259.
    50.Rumelhart, D. E., Hinton, G. E., Williams, R. J., (1986). Learning internal representations by error propagation, Parallel distributed processing, 1, 318-362.
    51.Sayah, M., (2016). Analyzing and Comparing Basel’s III Sensitivity Based Approach for the Interest Rate Risk in the Trading Book, Applied Finance and Accounting, Vol. 2(1).
    52.Spierdijk, L., (2016). Confidence Intervals for ARMA-GARCH Value-at-Risk: The Case of Heavy Tails and Skewness, Computational Statistics and Data Analysis, 100, 545–559.
    53.Wang, C.P., Lin, S. H., Huang, H. H., Wu, P. C., (2012). Using neural network for forecasting TXO price under different volatility models, Expert Systems with Applications, 39, 5025-5032.
    54.Yamai, Y. & Yoshiba, T., (2002). Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization, Monetary and Economic Studies, 20(1), 87-121.
    Description: 博士
    國立政治大學
    金融學系
    100352508
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100352508
    Data Type: thesis
    DOI: 10.6814/NCCU202001230
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    250801.pdf13168KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback