English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51679451      Online Users : 569
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130997
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130997


    Title: 應用Copula之配對交易策略
    Pairs Trading with Copulas
    Authors: 余冠緯
    Yu, Kuan-Wei
    Contributors: 張興華
    余冠緯
    Yu, Kuan-Wei
    Keywords: 統計套利
    配對交易
    關聯結構
    共整合關係
    statistical arbitrage
    pairs trading
    copula
    cointegration
    ARMA
    GARCH
    Date: 2020
    Issue Date: 2020-08-03 17:39:35 (UTC+8)
    Abstract: 配對交易在國內外證券市場是一種被廣泛運用的統計套利投資策略,它通過同時建構成對資產的多空部位來賺取資產價差收斂的損益。配對交易策略的顯著優點在於通過對沖機制來有效規避了該資產的系統性風險,即使在市場整體面臨下行風險的時候配對交易仍然能夠獲得比較穩定的收益。過去關於配對交易的文獻大致上專注在兩個方面,一是研究如何挑選出性質良好的配對以及相關交易模型,另一則是研究如何制定最優的交易策略使得交易績效得到最大化。本研究著重在後者,也就是引入一種基於關聯結構 (Copula) 函數和條件機率的股票配對交易策略來比較過去大眾所熟知的共整合策略以及最小距離策略的績效實證。最後經由本研究之實證顯示,關聯結構法不論在絕對績效或是風險調整後的績效上均勝過傳統的交易策略,同時也間接印證過去文獻提及最小距離策略在 2002 年之後可能獲得負報酬之事。
    Pairs trading is a kind of statistical arbitrage strategy which is widely used in oversea security markets. By creating both long and short position for two different assets, we can earn arbitrage profit through the converging of two assets’ prices. Obviously, the most important advantage of pairs trading is that it could earn profit steadily during either bear market or bull market. The researches in the past mainly focused on two aspects. One was that looking for the better way to find out what kind of pair of assets had a better performance and their relative trading strategy, another was that making a better strategy to maximize our profit. This paper mainly focuses on the latter. We introduce a stock pairs trading strategy based on Copula function and conditional probability and compare it to the strategy invented by previous papers: cointegration method and distance method. Generally speaking, the Copula method definitely has greater excess return and risk-adjusted return. We also incidentally confirm that some of the paper mentioned that distance method had a poor performance after 2002.
    Reference: [1] 林展源 (2019)。反向型 ETF 與波動型 ETF 之避險績效 ──應用 Copula-GJR-GARCH 模型。國立政治大學國際經營與貿易學系研究所碩士論文,台北市。
    [2] 鄭瑩 (2013)。D-Vine Copulas 之模型化相依性:台灣電子產業類股實證分析。國立屏東商業技術學院財務金融系研究所碩士論文,屏東縣。
    [3] Aas, K., Czado, C., Frigessi, A., Bakken, H., 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182–198.
    [4] Andrade, S., Di Pietro, V., Seasholes, M., 2005. Understanding the profitability of pairs trading. Unpublished working paper, UC Berkeley, Northwestern University.
    [5] Baillie, R. T., Myers, R. J., 1991. Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge. Journal of Applied Econometrics, 6 (2), 109-124.
    [6] Bedford, T., Cooke, R. M., 2002. Vines: A new graphical model for dependent random variables. Annals of Statistics, 1031–1068.
    [7] Bollerslev, T., 1987. A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics 69 (3), 542-547.
    [8] Box, G. E. P., Jenkins, G. M., 1970. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
    [9] Broussard, J. P., Vaihekoski, M., 2012. Profitability of pairs trading strategy in an illiquid market with multiple share classes. Journal of International Financial Markets, Institutions and Money 22 (5), 1188–1201.
    [10] Chen, H., Chen, S. J., Li, F., 2012. Empirical investigation of an equity pairs trading strategy. Working paper, University of British Columbia, University of Michigan.
    [11] Clayton, D. G., 1978. A model for association in bivariate life tables and its applications in epidemiological studies of familial tendency in chronic disease incident. Biometrika 65, 141-151.
    [12] Clegg, M., Krauss, C., 2016. Pairs trading with partial cointegration. FAU Discussion Papers in Economics, University of Erlangen-Nurnberg.
    [13] Dickey, D. A., Fuller, W. A., 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association 74 (366), 427–431.
    [14] Ding, P., 2016. On the conditional distribution of the multivariate t distribution. The American Statistician (just-accepted), 00–00.
    [15] Do, B., Faff, R., 2010. Does simple pairs trading still work? Financial Analysts Journal 66 (4), 83–95.
    [16] Do, B., Faff, R., 2012. Are Pairs Trading Profits Robust to Trading Costs? Financial Analysts Journal 35 (2), 261–287.
    [17] Dragulescu, A. A., 2014. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. R package version 0.5.7.
    [18] Elliott, R. J., Hoek, V. D., John, Malcolm, W. P., 2005. Pairs trading. Quantitative Finance 5 (3), 271–276.
    [19] Engle, R. F., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric Society 50 (4), 987-1007.
    [20] Engle, R. F., Granger, C. W., 1987. Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society 55 (2), 251–276.
    [21] Frank, M. J., 1979. On the Simultaneous Associativity of F(x, y) and x + y − F(x, y). Aequationes Mathematicae 19, 194–226.
    [22] Galenko, A., Popova, E., Popova, I., 2012. Trading in the presence of cointegration. Journal of Alternative Investments 15 (1), 85–97.
    [23] Gatev, E., Goetzmann, W. N., Rouwenhorst, K. G., 2006. Pairs trading: Performance of a relative-value arbitrage rule. Review of Financial Studies 19 (3), 797–827.
    [24] Gonzalez-Fernandez, Y., Soto, M., 2015. vines: Multivariate dependence modeling with vines. R package version 1.1.3.
    [25] Gumbel, E. J., 1960. Bivariate Exponential Distributions. Journal of the American Statistical Association 55, 698–707.
    [26] Hansen, B. E., 1994. Autoregressive Conditional Density Estimation. International Economic Review 35 (3), 705-730.
    [27] Huck, N., 2010. Pairs trading and outranking: The multi-step-ahead forecasting case. European Journal of Operational Research 207 (3), 1702–1716.
    [28] Huck, N., 2015. Pairs trading: does volatility timing matter? Applied Economics, 1–18.
    [29] Huck, N., Afawubo, K., 2015. Pairs trading and selection methods: is cointegration superior? Applied Economics 47 (6), 599–613.
    [30] Jacobs, H., Weber, M., 2015. On the determinants of pairs trading profitability. Journal of Financial Markets 23, 75–97.
    [31] Joe, H., 1997. Multivariate models and dependence concepts. Chapman & Hall, London.
    [32] Joe, H., Xu, J. J., 1996. The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report 166, Department of Statistics, University of British Columbia.
    [33] Kotz, S., Nadarajah, S., 2004. Multivariate t-distributions and their applications. Cambridge University Press.
    [34] Krauss, C., 2016. Statistical arbitrage pairs trading strategies: Review and outlook. Journal of Economic Surveys, forthcoming.
    [35] Liew, R. Q., Wu, Y., 2013. Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds 19 (1), 12–30.
    [36] Lin, Y., McCrae, M., Gulati, C., 2006. Loss protection in pairs trading through minimum profit bounds: A cointegration approach. Advances in Decision Sciences 2006.
    [37] Nadarajah, S., Kotz, S., 2005. Mathematical properties of the multivariate t distribution. Acta Applicandae Mathematica 89 (1-3), 53–84.
    [38] Nelsen, R. B., 1999. An introduction to copulas. Springer-Verlag.
    [39] Nelsen, R. B., 2007. An introduction to copulas. Springer Science & Business Media.
    [40] Perlin, M. S., 2009. Evaluation of pairs-trading strategy at the Brazilian financial market. Journal of Derivatives & Hedge Funds 15 (2), 122–136.
    [41] Peterson, B. G., Carl, P., 2014. PerformanceAnalytics: Econometric tools for performance and risk analysis. R package version 1.4.3541.
    [42] Rad, H., Low, Rand Kwong Yew, Faff, R. W., 2016. The profitability of pairs trading strategies: Distance, cointegration and copula methods. Quantitative Finance, 1–18.
    [43] Rmetrics Core Team, Wuertz, D., Setz, T., 2014. fCopulae: Rmetrics - bivariate dependence structures with copulae. R package version 3011.81.
    [44] Rmetrics Core Team, Wuertz, D., Setz, T., Chalabi, Y., 2015. timeSeries: Rmetrics - financial time series objects. R package version 3012.99.
    [45] Ryan, J. A., 2015. quantmod: Quantitative financial modelling framework. R package version 0.4-5.
    [46] Ryan, J. A., Ulrich, J. M., 2014. xts: eXtensible time series. R package version 0.9-7.
    [47] Sharpe, W. F., 1964. Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. Journal of Finance. 19 (3), 425-442.
    [48] Sklar, A., 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de I’ Institut deStatistique de l’University de Paris (8), 229-231.
    [49] Trapletti, A., Hornik, K., 2016. tseries: Time series analysis and computational finance. R package version 0.10-35.
    [50] Vidyamurthy, G., 2004. Pairs trading: Quantitative methods and analysis. J. Wiley, Hoboken, N.J.
    [51] Wickham, H., Francois, R., 2016. dplyr: A grammar of data manipulation. R package version 0.5.0.
    [52] Wuertz, D., 2013. fUnitRoots: Trends and unit roots. R package version 3010.78.
    [53] Wu, Y., 2013. Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds 19 (1), 12 – 30.
    [54] Xie, W., Liew, Q. R., Wu, Y., Zou, X., 2014. Pairs trading with copulas. Working paper, Nanyang Technological University.
    [55] Xie, W., Wu, Y., 2013. Copula-based pairs trading strategy. Asian Finance Association (AsFA) 2013 Conference.
    [56] Zeileis, A., Grothendieck, G., Ryan, J. A., 2015. zoo: S3 infrastructure for regular and irregular time series (z’s ordered observations). R package version 1.7-12.
    Description: 碩士
    國立政治大學
    金融學系
    107352034
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352034
    Data Type: thesis
    DOI: 10.6814/NCCU202000826
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    203401.pdf1009KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback