English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52552388      Online Users : 727
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130995
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130995


    Title: 運用強化學習建構資產配置- 以組合型基金為例
    The Construction of Asset Allocation Based on Reinforcement Learning - A Case Study of Fund of Funds
    Authors: 程耀進
    Cheng, Yao-Chin
    Contributors: 林士貴
    胡毓忠

    Lin, Shih-Kuei
    Hu, Yuh-Jong

    程耀進
    Cheng, Yao-Chin
    Keywords: 組合型基金
    資產配置
    強化學習
    Q-learning
    Fund of Funds
    Asset Allocation
    Reinforcement Learning
    Q-learning
    Date: 2020
    Issue Date: 2020-08-03 17:39:12 (UTC+8)
    Abstract: 資產配置一直都是投資市場中重要的課題,要如何做好投資組合管理,各家基金公司都有各自的方法,而隨著金融科技(Financial Technology, Fintech)的迅速地發展下,越來越多資產管理公司運用機器學習或深度學習進行資產配置,像是國外的資產管理公司就有推出AI智能選股的基金,而台灣也在這個浪潮下,快速地往這方面發展。隨著金融商品發展,境內組合型基金已經從兩年多前的兩百多檔,成長到現在的三百多檔,因此,組合型基金成為投資人新的投資工具,投資人如果是購買組合型基金,就相當於把資金分散投資在多檔基金,自動就達成資產配置的效果。
    因此,本研究欲導入強化學習來建構組合型基金的資產配置,透過強化學習來決定投資組合中每一檔基金的權重,進而達到最佳策略,而強化學習的獎勵機制正好與資產的報酬不謀而合,所以非常合適。本研究運用強化學習建構了三個子模型,並與指標進行比較,研究結果發現,年化夏普值平均提升了十五個百分點,不僅顯示了資產配置對投資組合的重要性,也顯示強化學習運用在組合型基金資產配置的可行性。
    Asset allocation has always been an important issue in the investment market. Each investment company has its own key to do a good job in portfolio management . with the rapid development of financial technology (Financial Technology, Fintech), more and more asset management companies use machine learning or deep learning for asset allocation. For example, foreign asset management companies launch funds based on AI selection and Taiwan is also rapidly developing in this direction . With the development of financial commodities, domestic Fund of funds have grown from two hundred to three hundred. Therefore, Fund of funds have become a new investment tool for investors.
    Therefore, this study wants to introduce reinforcement learning to construct the asset allocation of Fund of funds. By using reinforcement learning, we can determine the weight of each fund in the portfolio to achieve the optimal allocation and the reward in reinforcement learning coincides with the return of assets. This study uses reinforcement learning to construct three sub-models and compare them with benchmark. The results show that the annualized Sharpe ratio has increased by an average of fifteen percentage, which not only shows the importance of asset allocation to the portfolio, but also shows that feasibility in Fund of funds allocation by using reinforcement learning.
    Reference: 中文部分
    [1] 呂美瑩 (2003),台灣發展組合型基金之可行性研究,台灣大學財務金融學研究所碩士論文。

    [2] 李佩靜 (2005), 應用 DEA 投資組合效率指數於台灣組合型基金之研究 (Doctoral dissertation, 長庚大學).

    [3] 邱麗珍(2010),國內開放型共同基金規模與績效之關聯性探討,國立中山大學國際經營管理碩士班。

    [4] 沈蔓君 (2012), 台灣組合型基金績效研究 (Doctoral dissertation, 輔仁大學).

    [5] 陳瑞璽, 洪碧霞, & 劉喻欣 (2014), 組合型基金是否優於一般共同基金? 風險與報酬及基金特性之探討. 管理與系統, 21(2), 363-392.

    [6] 劉上瑋 (2017),深度增強學習在動態資產上之應用-以美國ETF為例,國立政治大學金融學系研究所碩士學位論文。

    [7] 葉致緯 (2015), 國內跨國股票組合型基金效率之研究—以運作時間達六年為例. 中正大學經濟系國際經濟研究所學位論文, 1-69.

    英文部分
    [1] Bellman, R.E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003.

    [2] Black, F. and Litterman, R. (1992). “Global Portfolio Optimization.” Financial Analysts Journal, September/October, 28-43.

    [3] Brinson, G. P., Singer, B. D., & Beebower, G. L. (1991). Determinants of portfolio performance II: An update. Financial Analysts Journal, 47(3), 40-48.

    [4] Filos, A. (2019). Reinforcement Learning for Portfolio Management. arXiv preprint arXiv:1909.09571.

    [5] Fothergill, M., & Coke, C. (2001). Funds of hedge funds: an introduction to multi-manager funds. The Journal of Alternative Investments, 4(2), 7-16.

    [6] Golec, J. H. (1996). The effects of mutual fund managers` characteristics on their portfolio performance, risk and fees. Financial Services Review, 5(2), 133-147.

    [7] He, G. and Litterman, R. (1999). “The Intuition Behind Black-Litterman Model Portfolios.” Investment Management Research, Goldman, Sachs & Company, December

    [8] Hensel, C. R., Ezra, D. D., & Ilkiw, J. H. (1991). The importance of the asset allocation decision. Financial Analysts Journal, 47(4), 65-72.

    [9] Jiang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059.

    [10] Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, Vol. 7, No. 1, pp. 77-91. March. 1952.

    [11] Meng, T. L., & Khushi, M. (2019). Reinforcement Learning in Financial Markets. Data, 4(3), 110.

    [12] Michaud, R. O. (1989). The Markowitz optimization enigma: Is‘optimized’optimal?. Financial Analysts Journal, 45(1), 31-42.

    [13] Pendharkar, P. C., & Cusatis, P. (2018). Trading financial indices with reinforcement learning agents. Expert Systems with Applications, 103, 1-13.

    [14] Perold, A. F., and W. F. Sharpe, (1988), Dynamic strategies for asset allocation,
    Financial Analysts Journal, 44,p.16.p.

    [15] Sharpe, W. F. (1966). Mutual fund performance. The Journal of business, 39(1), 119-138.

    [16] Sharpe, W. F. (1994). The sharpe ratio. Journal of portfolio management, 21(1), 49-58.

    [17] Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). Cambridge: MIT press

    [18] Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292
    Description: 碩士
    國立政治大學
    金融學系
    107352029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352029
    Data Type: thesis
    DOI: 10.6814/NCCU202001151
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202901.pdf2334KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback