English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51699857      Online Users : 478
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130993
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130993


    Title: 機器學習匯率訂價投資組合
    Machine Learning for Foreign Exchange Pricing Investment Portfolio
    Authors: 林庭陞
    Lin, Ting-Sheng
    Contributors: 林建秀
    林庭陞
    Lin, Ting-Sheng
    Keywords: 外匯交易
    利差交易策略
    動能交易策略
    價值交易策略
    機器學習策略
    超參數
    FX trade
    Carry trade
    Momentum strategy
    Value strategy
    Machine learning strategy
    Hyper-parameter
    Date: 2020
    Issue Date: 2020-08-03 17:38:46 (UTC+8)
    Abstract: 本研究主要是以總經因子(x_t)以及外匯個別因子(c_(i,t))經由寇雷克乘積運算得到的預測因子(z_(i,t))為基礎,進行機器學習模型的訓練,其中包括隨機森林(Random Forest, RF)、梯度提升樹(Gradient Boosted Trees, GBRT)、神經網路(Neural Network, NN)模型。接著,再從驗證集選擇超參數使得外匯超額報酬的預測準確度最高,即驗證集R^2。但實際要追求的是測試集外匯超額報酬的準確度,即測試集R^2。故在訓練期間(1997/01至2015/12),將共19國貨幣外匯超額報酬,即應變數,及預測因子(z_(i,t)),即自變數做參數估計。旨在探索機器學習模型的測試集R^2與二因子模型(市場因子及利差策略因子)及四因子模型(市場因子、利差、動能及價值策略因子)的高低。最終發現機器學習模型的測試集R^2皆較二因子及四因子模型高。

    接著,使用已經訓練好的機器學習模型對測試集的19國貨幣做外匯超額報酬預測,預測為最高的前25%的國家貨幣進行買入,同時預測為最低的後25%的國家貨幣進行賣出。目的就是要對價值、動能及利差策略測度所構建出的買入前25%的國家貨幣,賣出後25%的國家貨幣策略做比較。同時,進行平均值(Avg)、標準差(Std)、夏普比率(Sharpe Ratio)及最大虧損(Max DD)的比較。可發現大抵上機器學習模型的夏普比率較價值、動能及利差策略來的佳。而在驗證集中選擇的超參數可能對R^2帶來的影響也可能是一大重點。整體而言,機器學習模型策略的累積報酬優於價值、動能及利差策略。
    This paper mainly trained machine learning models including Random Forest, Gradient Boosted Trees, and Neural Network models based on prediction factors(z_(i,t)) calculated by Kronecker product of macro-economical factors(x_t) and separated foreign exchange factors(c_(i,t)).Then selected the hyper-parameters from the validation set to make prediction accuracy of foreign exchange excess return, namely R^2 of validation set, highest. In reality, we pursued the highest foreign exchange excess return R^2 of test set, namely R^2 of test set. So we used foreign exchange excess return of 19 kinds of currencies(dependent variable) and prediction factors(independent variables) during train set period from January 1997 to December 2015 to estimate parameters of different models. We want to see whether R^2 of test set of machine learning models is higher than that of two-factors and four-factors models. Finally, machine learning models performed better than two-factors and four-factors models indeed.
    Next used the well-trained machine learning models to predict foreign exchange excess return of 19 kinds of currencies in the test set. We buy the currencies predicted the top quarter by the models, selling the currencies predicted the bottom quarter. The purpose is to compare with the strategies constructed by different measures of Value, Momentum, and Carry strategies. Meanwhile, we do the comparison of Avg, Std, Sharpe Ratio, and Max DD. Generally, we can find Sharpe Ratio of machine learning models is better than that of Value, Momentum, and Carry strategies. And the hyper-parameters chosen from validation set might be another key point. To sum up, the cumulative return of machine learning models is better than that of Value, Momentum, and Carry strategies.
    Reference: [1] 郭秀樺(2018)。外匯報酬之利差、動能及價值交易策略成因分析。國立政治大學金融研究所碩士論文,台北市。
    [2] Adlar, J.K., Amir, E.K., & Andrew, W.L. (2010). Consumer credit-risk models via machine learning algorithms. Journal of Banking & Finance, 34, 2767-2787.
    [3] Akhtar, S., Andrew, W.L., Brian, C., Florentin, B., Qingqing, C. & Sanmay, D. (2016). Risk and risk management in the credit card industry. Journal of Banking & Finance, 72, 218-239.
    [4] Andrew, W.L., James, M.H. & Tomaso, P. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49, 851-889.
    [5] Apaar, S., Justin, S. & Kay G. (2016). Deep learning for mortgage risk. Available at SSRN 2799443.
    [6] Asness, C.S., Moskowitz, T.J., & Pedersen, L. (2013). Value and Momentum Everywhere. Journal of Finance, 68(3), 929-985.
    [7] Baberies, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of Finance, 49(3), 307-343.
    [8] Barroso, P., & Santa-Clara, P. (2014). Beyond the carry trade: Optimal currency portfolios. Journal of Financial and Quantitative Analysis, 50(5), 1037-1056.
    [9] Benjamin, M. & Tom, Z. (2016). Tree-based conditional portfolio sorts: The relation between past and future stock returns. Available at SSRN 2740751.
    [10] Bilson, J.F.O. (1981). The "Speculative Efficiency" Hypothesis. Journal of Business, 54(3), 435-451.
    [11] Brunnermeier, M.K., Nagel, S., & Pedersen, L.H. (2009). Carry Trades and Currency Crashes. NBER Macroeconomics Annual, 23, 313-347.
    [12] Bryan, K., Dacheng, X. & Shihao, G. (2019). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies , 33(5), 2223-2273.
    [13] Burnside, C., Eichenbaum, M., & Rebelo, S. (2011). Carry Trade and Momentum in Currency Markets. Annual Review of Financial Economics, 3(1), 511-535.
    [14] Campbell, R.H., Heqing, Z., & Yan, L. (2016). … and the cross-section of expected returns. Review of Financial Studies, 29, 5-68.
    [15] Campbell, R.H., & Wayne, E.F. (1999). Conditioning variables and the cross-section of stock returns. Journal of Finance, 54, 1325-1360.
    [16] Chaboud, A.P., & Wright, J.H. (2005). Uncovered interest parity: it works, but not for long. Journal of International Economics, 66(2), 349-362.
    [17] Chew, L.T., Jingtao, Y. & Yili, L. (2000). Option price forecasting using neural networks. Omega, 28, 455-466.
    [18] Chordia, T., & Shivakumar, L. (2002). Momentum, Business Cycle, and Time- varying Expected Returns. Journal of Finance, 57(2), 985-1019.
    [19] Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor Psychology and Security Market Under- and Overreactions. Journal of Finance, 53(6), 1839-1885.
    [20] Fama, E.F. (1970). Efficient Capital Market: A Review of Theory and Empirical Work. Journal of Finance, 25(2), 383-417.
    [21] Fama, E.F. (1984). Forward and Spot Exchange Rates. Journal of Monetary Economics, 14(3), 319-338.
    [22] Fama, E.F., & French, K.R. (1988). Dividend yields and expected stock returns. Journal of Financial Economics, 22(1), 3-25.
    [23] Fama, E.F., & French, K.R. (1992). The Cross-Section of Expected Stock Returns. Journal of Finance, 47(2), 427-465.
    [24] Fama, E.F., & French, K.R. (1993). Common risk factors in the return on stocks and bonds. Journal of Financial Economics, 33(1), 3-56.
    [25] Fama, E.F., & French, K.R. (1996). Multifactor Explanation of Asset Pricing Anomalies. Journal of Finance, 51(1), 55-84.
    [26] Fama, E.F., & MacBeth, J.D. (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy, 81(3), 607–636.
    [27] Filippou, I., & Taylor, M. P. (2017). Common Macro Factors and Currency Premia. Journal of Financial and Quantitative Analysis, 52(4), 1731-1763.
    [28] Flood, M.D. (1994). Market structure and inefficiency in the foreign exchange market. Journal of International Money and Finance, 13(2), 131-158.
    [29] Galati, G., & Melvin, M. (2004). Why has FX trading surged?. BIS Quarterly Review, Dec. 2004, 67-74.
    [30] Grinblatt, M., & Han, B. (2005). Prospect theory, mental accounting, and momentum. Journal of Financial Economics, 78(2), 311-339.
    [31] Heaton, J.B., Polson, N.G., & Witte, J.H. (2016). Deep learning in Finance. arXiv preprint arXiv:1602.06561.
    [32] Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance, 48(1), 65-91.
    [33] Jegadeesh, N., & Titman, S. (2002). Profitability of Momentum Strategies: An Evaluation of Alternative Explanations. Journal of Finance, 56(2), 699-720.
    [34] Jylhä, P., & Suominen, M. (2011). Speculative capital and currency carry trades. Journal of Financial Economics, 99(1), 60-75.
    [35] Jylhä, P., Rinne, K., & Suominen, M. (2014). Do Hedge Funds Supply or Demand Liquidity?. Review of Finance, 18(4), 1259-1298.
    [36] Kroencke, T. A., Schindler, F., & Schrimpf, A. (2014). International diversification benefits with foreign exchange investment styles. Review of Finance, 18(5),1847- 1883.
    [37] Lakonishok, J., Shleifer, A., & Vishny, R. W. (1994). Contrarian Investment, Extrapolation, and Risk. Journal of Finance, 49(5), 1541-1578.
    [38] Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics, 47(1), 13-37.
    [39] Lustig, H., Roussanov, N., & Verdelhan, A. (2011). Common Risk Factor in Currency Markets. Review of Financial Studies, 24(11), 3731-3777.
    [40] Lustig, H., Roussanov, N., & Verdelhan, A. (2014). Countercyclical currency risk premia. Journal of Financial Economics, 111(3), 527-553.
    [41] Menkhoff, L., Sarno, L., Shmeling, M., & Schrimpf, A. (2012a). Carry Trades and Global Foreign Exchange Volatility. Journal of Finance, 67(2), 681-718.
    [42] Menkhoff, L., Sarno, L., Shmeling, M., & Schrimpf, A. (2012b). Currency Momentum Strategies. Journal of Financial Economics, 106(3), 660-684.
    [43] Menkhoff, L., Sarno, L., Shmeling, M., & Schrimpf, A. (2016). Currency value. Review of Financial Studies, 30(2), 416-441.
    [44] Moosa, I. A. (2010). The Profitability of Carry Trade - La redditività del carry trade. Economia Internazionale / International Economics, 63(3), 361-380.
    [45] Okunev ,J., & White, D. (2003). Do Momentum-Based Strategies Still Work in Foreign Currency Markets?. Journal of Financial and Quantitative Analysis, 38(2), 425-447.
    [46] Paster ,L., & Stambaugh, R. F. (2001). Liquidity Risk and Expected Stock Returns. Journal of Political Economy, 111(3), 642-685.
    [47] Plantin, G., & Shin, H. S. (2011). Carry Trades, Monetary Policy and Speculative Dynamics. CEPR Discussion Paper (February 2011), DP8224.
    [48] Raza, A. (2015). Are Value Strategies Profitable in the Foreign Exchange Market.
    [49] Rouwenhorst, K.G. (1998). International momentum strategies. Journal of Finance, 53(1), 267-284.
    [50] Rouwenhorst, K.G. (1999). Local return factors and turnover in emerging stock markets. Journal of Finance, 54(4), 1439-1464.
    [51] Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. Journal of Finance, 19(3), 425-442.
    Description: 碩士
    國立政治大學
    金融學系
    107352026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352026
    Data Type: thesis
    DOI: 10.6814/NCCU202000764
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202601.pdf2459KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback