Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/130992
|
Title: | 機器學習因子擇時模型結合Black-Litterman模型之投資組合建構 Portfolio Construction with Machine Learning Factor Timing and Black-Litterman Models |
Authors: | 林生華 Lin, Sheng-Hua |
Contributors: | 林靖庭 林生華 Lin, Sheng-Hua |
Keywords: | 因子投資 因子擇時 資產配置模型 隨機森林模型 橫斷面因子模型 Black-Litterman模型 五分位數投資組合策略 Factor investing factor timing asset allocation model random forest model cross-sectional factor model Black-Litterman model quintile portfolios |
Date: | 2020 |
Issue Date: | 2020-08-03 17:38:35 (UTC+8) |
Abstract: | 本研究融合因子投資、因子擇時、Black-Litterman資產配置模型等市場主流投資想法,以台灣上市股票作為資產池,建構投資策略,目標是建構穩健的投資組合,動態篩選有效因子,將有效因子融入權重優化過程,使得最終的資產配置權重能同時反映個股的優劣以及個股間相關性,動態配置資產。 本研究之目的及研究成果,以下分述之 : •探討機器學習結合因子擇時模型之有效性 樣本外期間,因子擇時模型準確率約為55%,當因子本身對於下期報酬有顯著影響力時,準確率更高。動量因子在樣本期間對於下期報酬不具影響力,然而其因子擇時模型則有60%以上的準確率,代表模型可以預測動量因子的有效性,具有擇時能力。 •確認以橫斷面因子模型作為Black-Litterman之量化投資人觀點的可行性 以Long-Short五分位數投資組合策略,分析分析有效合成因子之有效性,策略績效表現顯示,經因子擇時模型之有效合成因子其策略勝率高達74%,夏普比率為1.31。 •研究結合因子擇時、量化投資人觀點、Black-Litterman權重配置而形成的投資策略之績效表現。 考慮交易稅負,極大化夏普比率形成的投資組合,夏普比率為0.8,高於未經因子擇時模型之投資組合的夏普比率約1.78倍,統計上顯著異於大盤報酬,同時有較低的最大回撤比率。 In this study, we take the stocks listed on TSE as assets pool and construct a robust portfolio strategy with novel investment ideas, including factor investing, factor timing and Black-Litterman model. With this strategy, we can dynamically detect the efficient factors and composite these factors into single index to identify future performance of a stock. Also, by combining this index and portfolio optimizer, the weight dynamically changes due to this index and the correlations structure between stocks. The purposes and results of the study are listed below : •Show the efficacy of machine learning factor timing model. The averaging accuracy of factor timing models is about 0.55. The result also shows the fact that accuracy of factor model is positive correlative with degree of a factor’s efficiency. •Check the feasibility of quantitative investors’ view of Black-Litterman derived from cross-sectional factor model. We analyze efficacy of the efficient composite factor through quintile portfolio. The win rate of long-short strategy is 0.74, higher than benchmark. The Sharpe ratio is around 1.31 and beats the benchmark. •Show the performance of portfolio strategy The Sharpe ratio of maximum Sharpe ratios strategy hits 0.8, approximately 1.78 times that of benchmark. Also, the mean return of this strategy statistically significantly differs from TAIEX. |
Reference: | 1. Black, F., & Litterman, R. (1990). Asset allocation: combining investor views with market equilibrium. Goldman Sachs Fixed Income Research, 115. 2. Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Wadsworth. 3. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 4. Connor, G. (1995). The three types of factor models: A comparison of their explanatory power. Financial Analysts Journal, 51(3), 42-46. 5. Fama, E. F., & French, K. R. (1998). The Cross-Section of Expected Stock Returns. Journal of Finance, 47(2), 427-465. 6. Fama, E. F., & French, K. R. (1998). Value versus growth: The international evidence. Journal of finance, 53(6), 1975-1999. 7. Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22. 8. Figelman, I. (2017). Black–Litterman with a Factor Structure Applied to Multi-Asset Portfolios. The Journal of Portfolio Management, 44(2), 136-155. 9. Frost, P. A., & Savarino, J. E. (1988). For better performance: Constrain portfolio weights. Journal of Portfolio Management, 15(1), 29. 10. Grinold, R. C., and Kahn, R. N. (2000). Active Portfolio Management. New York: McGraw-Hill. 11. Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844. 12. Hodges, P., Hogan, K., Peterson, J. R., & Ang, A. (2017). Factor timing with cross-sectional and time-series predictors. The Journal of Portfolio Management, 44(1), 30-43. 13. Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels. In Forecasting expected returns in the financial markets (pp. 17-38). Academic Press. 14. Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets, The Review of Economics and Statistics, 47(1), 13-37. 15. Markowitz, H. (1952). Portfolio selection, Journal of Finance, 7(1), 77-91. 16. Miller, K. L., Li, H., Zhou, T. G., & Giamouridis, D. (2015). A risk-oriented model for factor timing decisions. The Journal of Portfolio Management, 41(3), 46-58. 17. Mossin, J. (1966). Equilibrium in a Capital Asset Market, Econometrica, 34(4), 768-783. 18. Rosenberg, B. (1974). Extra-market components of covariance in security returns. Journal of Financial and quantitative analysis, 263-274. 19. Ross , S. A. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13(3), 341-360. 20. Sharpe, W. F. (1964), Capital Asset Price: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19(3), 425-442. 21. Theil, H. (1971). Principles of Econometrics. New York: Wiley and Sons. 22. Theil, H. (1978). Introduction to Econometrics. New Jersey: Prentice-Hall, Inc. |
Description: | 碩士 國立政治大學 金融學系 107352022 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0107352022 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202001165 |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
202201.pdf | | 2950Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|