English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52550233      Online Users : 851
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130992
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130992


    Title: 機器學習因子擇時模型結合Black-Litterman模型之投資組合建構
    Portfolio Construction with Machine Learning Factor Timing and Black-Litterman Models
    Authors: 林生華
    Lin, Sheng-Hua
    Contributors: 林靖庭
    林生華
    Lin, Sheng-Hua
    Keywords: 因子投資
    因子擇時
    資產配置模型
    隨機森林模型
    橫斷面因子模型
    Black-Litterman模型
    五分位數投資組合策略
    Factor investing
    factor timing
    asset allocation model
    random forest model
    cross-sectional factor model
    Black-Litterman model
    quintile portfolios
    Date: 2020
    Issue Date: 2020-08-03 17:38:35 (UTC+8)
    Abstract: 本研究融合因子投資、因子擇時、Black-Litterman資產配置模型等市場主流投資想法,以台灣上市股票作為資產池,建構投資策略,目標是建構穩健的投資組合,動態篩選有效因子,將有效因子融入權重優化過程,使得最終的資產配置權重能同時反映個股的優劣以及個股間相關性,動態配置資產。
    本研究之目的及研究成果,以下分述之 :
    •探討機器學習結合因子擇時模型之有效性
    樣本外期間,因子擇時模型準確率約為55%,當因子本身對於下期報酬有顯著影響力時,準確率更高。動量因子在樣本期間對於下期報酬不具影響力,然而其因子擇時模型則有60%以上的準確率,代表模型可以預測動量因子的有效性,具有擇時能力。
    •確認以橫斷面因子模型作為Black-Litterman之量化投資人觀點的可行性
    以Long-Short五分位數投資組合策略,分析分析有效合成因子之有效性,策略績效表現顯示,經因子擇時模型之有效合成因子其策略勝率高達74%,夏普比率為1.31。
    •研究結合因子擇時、量化投資人觀點、Black-Litterman權重配置而形成的投資策略之績效表現。
    考慮交易稅負,極大化夏普比率形成的投資組合,夏普比率為0.8,高於未經因子擇時模型之投資組合的夏普比率約1.78倍,統計上顯著異於大盤報酬,同時有較低的最大回撤比率。
    In this study, we take the stocks listed on TSE as assets pool and construct a robust portfolio strategy with novel investment ideas, including factor investing, factor timing and Black-Litterman model. With this strategy, we can dynamically detect the efficient factors and composite these factors into single index to identify future performance of a stock. Also, by combining this index and portfolio optimizer, the weight dynamically changes due to this index and the correlations structure between stocks.
    The purposes and results of the study are listed below :
    •Show the efficacy of machine learning factor timing model.
    The averaging accuracy of factor timing models is about 0.55. The result also shows the fact that accuracy of factor model is positive correlative with degree of a factor’s efficiency.
    •Check the feasibility of quantitative investors’ view of Black-Litterman derived from cross-sectional factor model.
    We analyze efficacy of the efficient composite factor through quintile portfolio. The win rate of long-short strategy is 0.74, higher than benchmark. The Sharpe ratio is around 1.31 and beats the benchmark.
    •Show the performance of portfolio strategy
    The Sharpe ratio of maximum Sharpe ratios strategy hits 0.8, approximately 1.78 times that of benchmark. Also, the mean return of this strategy statistically significantly differs from TAIEX.
    Reference: 1. Black, F., & Litterman, R. (1990). Asset allocation: combining investor views with market equilibrium. Goldman Sachs Fixed Income Research, 115.
    2. Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Wadsworth.
    3. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    4. Connor, G. (1995). The three types of factor models: A comparison of their explanatory power. Financial Analysts Journal, 51(3), 42-46.
    5. Fama, E. F., & French, K. R. (1998). The Cross-Section of Expected Stock
    Returns. Journal of Finance, 47(2), 427-465.
    6. Fama, E. F., & French, K. R. (1998). Value versus growth: The international evidence. Journal of finance, 53(6), 1975-1999.
    7. Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22.
    8. Figelman, I. (2017). Black–Litterman with a Factor Structure Applied to Multi-Asset Portfolios. The Journal of Portfolio Management, 44(2), 136-155.
    9. Frost, P. A., & Savarino, J. E. (1988). For better performance: Constrain portfolio weights. Journal of Portfolio Management, 15(1), 29.
    10. Grinold, R. C., and Kahn, R. N. (2000). Active Portfolio Management. New
    York: McGraw-Hill.
    11. Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.
    12. Hodges, P., Hogan, K., Peterson, J. R., & Ang, A. (2017). Factor timing with cross-sectional and time-series predictors. The Journal of Portfolio Management, 44(1), 30-43.
    13. Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels. In Forecasting expected returns in the financial markets (pp. 17-38). Academic Press.
    14. Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky
    Investments in Stock Portfolios and Capital Budgets, The Review of Economics and Statistics, 47(1), 13-37.
    15. Markowitz, H. (1952). Portfolio selection, Journal of Finance, 7(1), 77-91.
    16. Miller, K. L., Li, H., Zhou, T. G., & Giamouridis, D. (2015). A risk-oriented model for factor timing decisions. The Journal of Portfolio Management, 41(3), 46-58.
    17. Mossin, J. (1966). Equilibrium in a Capital Asset Market, Econometrica, 34(4), 768-783.
    18. Rosenberg, B. (1974). Extra-market components of covariance in security returns. Journal of Financial and quantitative analysis, 263-274.
    19. Ross , S. A. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of
    Economic Theory, 13(3), 341-360.
    20. Sharpe, W. F. (1964), Capital Asset Price: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, 19(3), 425-442.
    21. Theil, H. (1971). Principles of Econometrics. New York: Wiley and Sons.
    22. Theil, H. (1978). Introduction to Econometrics. New Jersey: Prentice-Hall, Inc.
    Description: 碩士
    國立政治大學
    金融學系
    107352022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352022
    Data Type: thesis
    DOI: 10.6814/NCCU202001165
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202201.pdf2950KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback