政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130543
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114012/145044 (79%)
造訪人次 : 52101687      線上人數 : 613
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130543
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/130543


    題名: 建構ESG股息波動投資組合:隨機森林與PSO方法的結合
    Constructing ESG Portfolio with the Characteristic of Dividend Yields and Volatility: Combining Random Forests and PSO Method
    作者: 葉宇辰
    Ye, Yu-Chen
    貢獻者: 林士貴
    蔡銘峰

    葉宇辰
    Ye, Yu-Chen
    關鍵詞: 隨機森林
    投資組合理論
    粒子群最佳化
    Random Forests
    Particle Swarm Optimization
    Portfolio Theory
    ESG
    日期: 2020
    上傳時間: 2020-07-01 13:41:26 (UTC+8)
    摘要: 本文使用台灣證券市場在2012到2019年的資料,利用隨機森林模型與PSO方法探討以下議題:(一) 觀察會影響股息波動特性預測的重要變數;(二) 以PSO方法解決基數限制下Markowitz最佳化問題並建構投資組合;(三) 比較不同股息波動特性下的投資組合績效;(四) 比較具備高ESG排名的個股,其股息波動特性對投資組合績效的影響。本文的實證結果可以歸納如下:(一) 影響股息波動特性的主要因素為過去三年與股息或波動有直接或間接關係的變數,例如現金殖利率、Beta值、周轉率與成交量;(二) PSO方法解決基數限制的Markowitz最佳化問題有助於投資組合的配置,八組投資組合裡有六組都優於使用一般Markowitz最佳化的投資組合。(三) 在建構投資組合上股息波動特性對於投資組合報酬有正向關係;(四) ESG、股息與波動之間可能會相互牴觸,當投資組合結合過多的特性時,對於投資組合而言不全然都是正面影響。
    This article uses the data of the Taiwan securities market from 2012 to 2019, using the random forest model and the PSO method to discuss the following topics: (1) Observe the important variables that affect the predictability of dividend and volatility characteristics; (2) Use the PSO method solves cardinality constrained Markowitz portfolio optimization problems and construct portfolio; (3) Compare portfolio performance under different dividend and volatility characteristics; (4) Compare the impact of dividend and volatility characteristics on portfolio performance when stocks have higher rank of ESG. The empirical results of this paper can be summarized as follows: (1) The main factors that affect the characteristics of dividend and volatility are variables that have a direct or indirect relationship with dividends or volatility in the past three years, such as cash yield rate, Beta value, turnover rate and trading volume; (2) The PSO method solves cardinality constrained Markowitz portfolio optimization problems, which is helpful for the returns of the portfolio. Six of the eight groups of portfolios are superior to the general Markowitz optimized portfolio. (3) Dividends and volatility in the construction of a portfolio have a positive relationship with portfolio returns; (4) ESG, dividends and volatility may conflict with each other. When the portfolio combines too many characteristics, there are not always have positive effects for the portfolio.
    參考文獻: 1.Avramov, D., & Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics., 2(1), 25-47.
    2.Baskin, J. (1989). Dividend policy and the volatility of common stocks. Journal of portfolio Management, 15(3), 19.
    3.Black, F. (1992). Beta and return. Journal of portfolio management, 1.
    4.Black, F., Jensen, M. C., & Scholes, M. (1972). The capital asset pricing model: Some empirical tests. Studies in the theory of capital markets, 81(3), 79-121.
    5.Blume, M. E. (1980). Stock returns and dividend yields: Some more evidence. The Review of Economics and Statistics, 567-577.
    6.Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    7.Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: Real world applications, 10(4), 2396-2406.
    8.Czerwińska, T., & Kaźmierkiewicz, P. (2015). ESG rating in investment risk analysis of companies listed on the public market in Poland. Economic Notes: Review of Banking, Finance and Monetary Economics, 44(2), 211-248.
    9.Deng, G. F., Lin, W. T., & Lo, C. C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566.
    10.Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942-1948). Citeseer.
    11.Gombola, M. J., & Liu, F. Y. L. (1993). Dividend yields and stock returns: Evidence of time variation between bull and bear markets. Financial Review, 28(3), 303-327.
    12.Gordon, R. H., & Bradford, D. F. (1980). Taxation and the stock market valuation of capital gains and dividends: Theory and emphirical results. Journal of Public Economics, 14(2), 109-136.
    13.Gwilym, O. A., Morgan, G., & Thomas, S. (2000). Dividend stability, dividend yield and stock returns: UK evidence. Journal of Business Finance & Accounting, 27(3‐4), 261-281.
    14.Larivière, B., & Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications, 29(2), 472-484.
    15.Litzenberger, R. H., & Ramaswamy, K. (1979). The effect of personal taxes and dividends on capital asset prices: Theory and empirical evidence. Journal of financial economics, 7(2), 163-195.
    16.Liu, M., Wang, M., Wang, J., & Li, D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical, 177, 970-980.
    17.Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments (Vol. 16). New York: John Wiley.
    18.Markowitz, H. M. (2010). Portfolio theory: as I still see it. Annual Review of Financial Economics, 2(1), 1-23.
    19.Michaud, R. O. (1989). The Markowitz optimization enigma: Is ‘optimized’optimal? Financial Analysts Journal, 45(1), 31-42.
    20.Nugrahaeni, R. A., & Mutijarsa, K. (2016, August). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic) (pp. 163-168). IEEE.
    21.Sherwood, M. W., & Pollard, J. L. (2018). The risk-adjusted return potential of integrating ESG strategies into emerging market equities. Journal of Sustainable Finance & Investment, 8(1), 26-44.
    22.Verheyden, T., Eccles, R. G., & Feiner, A. (2016). ESG for all? The impact of ESG screening on return, risk, and diversification. Journal of Applied Corporate Finance, 28(2), 47-55.
    描述: 碩士
    國立政治大學
    金融學系
    107352014
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107352014
    資料類型: thesis
    DOI: 10.6814/NCCU202000556
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    201401.pdf4660KbAdobe PDF274檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋