Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/129647
|
Title: | 基於 multi-resolution B-spline basis 之二維曲面估計 Estimate of the two-dimensions surface based on multi-resolution B-spline basis |
Authors: | 林哲宇 Lin, Zhe-Yu |
Contributors: | 黃子銘 林哲宇 Lin, Zhe-Yu |
Keywords: | B-spline迴歸 節點選取 曲面估計 B-spline regression Knot selection Surface estimation |
Date: | 2020 |
Issue Date: | 2020-05-05 11:56:46 (UTC+8) |
Abstract: | 本研究是根據Yuan[12]提出的Multi-resolution B-spline basis節點放置方法對於節點的篩選做進一步的改良,以擾動項ε的變異數σ^2為標準,採用向後刪除的概念提出方法一及方法二,也將其改良後的方法透過張量積擴展到二維曲面的估計,以copula密度函數作為迴歸函數,與核迴歸中的局部線性迴歸的結果進行比較。 依模擬結果,方法一會因為σ的估計膨脹而篩選掉過多節點,方法二受σ的估計影響較小,估計效果較佳,也較為穩定。 在以copula密度函數作為迴歸函數的模擬實驗中,較不平滑的迴歸函數使用方法二來估計,估計效果較佳;較平滑的迴歸函數使用局部線性迴歸來估計為最佳,但如果在σ的估計上能更好,方法二的估計效果可能優於局部線性迴歸。 This thesis is based on the multi-resolution B-spline basis knots placement method proposed by Yuan[12] to further improve the selection of knots. Based on the variation of the disturbance term, Method 1 and Method 2,are proposed using the concept of backward deletion. The improved method is also extended to the estimation of the two-dimensional surface. through the tensor product. Simulation studies have been carried out to compare the performance of Methods 1 and 2, and local linear regression. According to the results of simulation studies, Method 1 tends to filter out too many knots because of the large estimation error of σ,and Method 2 is less affected by the estimation of σ. The estimation based on Method 2 is more accurate and stable. In the studies where Methods 1 and 2, and local linear regression are compared, Method 2 outperforms local linear regression when the regression function is less smooth. When the regression function is smooth, local linear regression performs better than Method 2. However,if the estimation of σ can be better, the estimation accuracy of Method 2 may be better than local linear regression. |
Reference: | [1] William S. Cleveland and Susan J. Devlin. Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403):596–610, 1988.
[2] WS Cleveland. Lowess: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35:54, 1981.
[3] Jerome H. Friedman. Multivariate adaptive regression splines. Ann. Statist., 19(1):1–67, 1991.
[4] David L. B. Jupp. Approximation to data by splines with free knots. SIAM Journal on Numerical Analysis, 15(2):328–343, 1978.
[5] Hongmei Kang, Falai Chen, Yusheng Li, Jiansong Deng, and Zhouwang Yang.
Knot calculation for spline fitting via sparse optimization. Computer-Aided Design, 58:179–188, 2015.
[6] Mary J. Lindstrom. Penalized estimation of free-knot splines. Journal of Computational and Graphical Statistics, 8(2):333–352, 1999.
[7] Satoshi Miyata and Xiaotong Shen. Adaptive free-knot splines. Journal of Computational and Graphical Statistics, 12(1):197–213, 2003.
[8] M. R. Osborne, B. Presnell, and B. A. Turlach. Knot selection for regression splines via the lasso. In Dimension Reduction, Computational Complexity, and Information, pages 44–49. America, Inc, 1998.
[9] Abe Sklar. Fonctions de r´epartition "a n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universit´e de Paris, 8:229–231, 1959.
[10] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B), 58:267–288, 1996.
[11] Wannes Van Loock, Goele Pipeleers, J. Schutter, and Jan Swevers. A convex optimization approach to curve fitting with b-splines. IFAC Proceedings Volumes (IFAC-PapersOnline), 18:2290–2295, 2011.
[12] Yuan Yuan, Nan Chen, and Shiyu Zhou. Adaptive b-spline knot selection using multi-resolution basis set. IIE Transactions, 45:1263–1277, 2013.
[13] Shanggang Zhou and Xiaotong Shen. Spatially adaptive regression splines and accurate knot selection schemes. Journal of the American Statistical Association, 96(453):247–259, 2001 |
Description: | 碩士 國立政治大學 統計學系 106354016 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106354016 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202000415 |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
401601.pdf | | 2247Kb | Adobe PDF2 | 61 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|