English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52549816      Online Users : 879
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/124742
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124742


    Title: 基於支持向量回歸的選股模型實證研究 —以台股市場爲例
    An Empirical Study of Stock Selection Model Based on Support Vector Regression - Taiwan Stock Market as An Example
    Authors: 卓越
    Zhuo, Yue
    Contributors: 廖四郎
    Liao, Szu-Lang
    卓越
    Zhuo, Yue
    Keywords: 機器學習
    支持向量回歸
    支持向量機
    量化交易
    選股模型
    Machine learning
    Support vector regression
    Support vector machine
    Quant trade
    Stock selection model
    Date: 2019
    Issue Date: 2019-08-07 16:13:19 (UTC+8)
    Abstract: 當今世界的發展下,隨著信息技術的快速發展,計算機進行資料處理越來越流行。近幾年來機器學習技術的火爆,更加催生了將機器學習用在金融、經濟等領域的熱潮。本文選擇了機器學習領域的成熟算法支持向量機的分支——支持向量回歸,當作基礎的算法,搭配以網格搜索、主成分分析法對模型進行參數尋優和對資料進行降維處理。選取2009年第一季度到2018年第四季度的財報資料共170個指標和收盤價資料,利用2009年到2015年的資料對上述的支持向量回歸模型進行訓練,再利用2016年到2018年的資料進行回測。回測結果表明,支援向量回歸模型對於台股市場有一定的預測能力,當使用主成分分析法提取特徵個數為十個的時候,整體模型的報酬率表現最好,當特徵個數增加或者減少時,一定程度上可以增加模型的擬合程度,但是會增加樣本內和樣本外的R^2的差,導致模型的一般化能力減弱。
    Since the great development of today`s world, computer data processing has become more and more popular with the rapid development of information technology. In recent years, the popularity of Machine Learning technology has spawned a boom in applications of finance and economy. This paper chooses the Support Vector Regression (SVR) as the basic algorithm, a branch of the mature Machine Learning approach, Support Vector Mchine (SVM). With the application of grid search and principal component analysis method, the parameters of the model are optimized and the data dimension is reduced. 170 indicators and close price data from Q1 2009 to Q4 2018 are selected, when data from 2009 to 2015 is used to train the SVR model, and data from 2016 to 2018 is used for back testing. The back test result shows that SVR model has predictive ability for the Taiwan stock market. When ten features are extracted by principal component analysis, the return of overall model reaches the best. When the number of features increases or reduces, the fitting degree of the model can be increased to some extent, but the difference of R^2 between sample and out of sample increases, resulting in a weakness of the model generalization ability.
    Reference: 全林,姜秀珍,趙俊和,汪東,(2009)。基於SVM分類算法的選股研究。上海交通大學學報,43(9):1412-1416 。
    李航,(2012)。統計學習方法。北京:清華大學出版社。
    周漸,(2017)。基於SVM算法的多因子選股模型實證研究。未出版之碩士論文,浙江工商大學,金融,杭州。
    高雯,(2018)。基於支持向量機參數優化算法的股票智能投顧策略研究。未出版之碩士論文,上海師範大學,金融,上海。
    周志華,(2016)。機器學習。北京:清華大學出版社。
    張玉川,張作泉,黃珍 ,(2008)。支持向量機在選擇優質股票中的應用。統計與決策,(4):163-165。
    趙佳藝,(2019)。量化投資發展及我國現狀分析。現代商貿工業,2019(8):116-117 。
    謝東東,(2018)。量化投資的特點、策略和發展探討。時代金融,709:245、252 。
    蘇治,傅曉媛,(2013)。核主成分遺傳算法與SVR選股模型改進。統計研究,30(5):54-62 。
    魏妹金(2015) 。支持向量机多因子选股模型。未出版之碩士論文,華僑大學,統計學系,泉州。
    Alex J.Smola, Bernhard Schölkopf, 2004. A tutorial on Support Vector Regression, Statistics and Computing, 14(3):199-222.
    A.Fan, M.Palaniswami, 2001. Stock Selection using Support Vector Machines. NeuralNetworks, 2001. Proceedings. IJCNN `01. International Joint Conference on. IEEE,2001:1793 - 1798.
    Chien-Feng Huang, 2012. A hybrid Stock Selection Model using Genetic Algorithms and Support Vector Regression. Applied Soft Computing,12(2):807-818.
    Chi-Yuan Yeh, Chi-Wei Huang, Shie-Jue Lee, 2011. A Multiple-Kernel Support Vector Regression approach for Stock Market price forecasting. Expert Systems with Applications,38(3):2177-2186.
    Dennis Olson and Charles Mossman, 2003. Neural Netword forecasts of Canadian Stock Returns using accounting ratios. International Journal of Forecasting, 19(3):453-465
    F.S.Wong, P.Z.Wang, T.H.Goh, B.K.Quek, 1992. Fuzzy Neural Systems for Stock Selection. Financial Analysts Journal, 48(1):47-52.
    Huanhuan Yu, Rongda Chen, Guoping Zhang,2014. A SVM Stock Selection Model whithin PCA, Procedia Computer Science, 31:406-412.
    R.J.Kuo, C.H.Chen, Y.C.Hwang, 2001. An Intelligent Stock Trading Decision Support System through Integration of Genetic Algorithm Based Fuzzy Neural Network and Artificial Neural Network. Fuzzy Sets and Systems, 118(1):21-45
    Tong-Seng Quah and Bobby Srinivasan, 1999. Improving returns on Stock Investment through Neural Network Selection. Expert Systems with Applications, 17(4):295-301
    Description: 碩士
    國立政治大學
    金融學系
    106352044
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106352044
    Data Type: thesis
    DOI: 10.6814/NCCU201900250
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    204401.pdf1478KbAdobe PDF2119View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback