政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124740
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52072313      Online Users : 402
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124740


    Title: 深度投資組合:以臺灣50爲例
    Deep Portfolio: the Evidence in Taiwan 50
    Authors: 張玄
    Zhang, Xuan
    Contributors: 廖四郎
    張玄
    Zhang, Xuan
    Keywords: 神經網路
    長短期記憶體
    自編碼器
    深度投資組合
    Neural networks
    LSTM
    Autoencoder
    Deep portfolio
    ETF
    Date: 2019
    Issue Date: 2019-08-07 16:12:55 (UTC+8)
    Abstract: 神經網路因其强大的對特徵提取能力,近年來廣泛的應用在金融領域,如資產定價、風險管理、投資組合構建。與傳統的投資組合理論相比,神經網路可以對數據閒複雜的非綫性特徵更爲敏感;此外,更容易通對樣本外驗證防止模型過擬合。在本研究中,通過神經網路對臺灣50指數與其成分股完成選股和構造投資組合追蹤臺灣50指數,實現用較少的股票數量達到采用完全複製發的元大0050ETF追蹤誤差。
    Neural networks have been applied to financial applications more recently, such as asset pricing, risk management and constructing portfolios. Compared with standard financial methods only capture the linearity of data, the neural networks can take more non-linearity into account. Another advantage of neural network is that it is easier to reduce over-fitting and improve the performance on the validation set. In this study we use dense and LSTM neural networks to select stocks from stock universe and construct a portfolio to track Taiwan 50 Index. The result shows that deep portfolio with less stocks can have less tracking error than a fully replicated ETF (Yuanta 0050).
    Reference: Asness, C. S., Ilmanen, A., Israel, R., and Moskoqitz, T. J. (1998). Investing with Style.Journal of Investment Management, 13(11), 27-63.
    Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial analysts journal, 48(5), 28-43.
    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
    Chamberlain, G. and Rothschild, M. (1983). Arbitrage, Factor Structure and Mean-Variance analysis in Large Asset markets. Econometrika, 51, 1205-24.
    Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
    Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
    Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314.
    Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121-2159.
    Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.
    Fama, E. F., & French, K. R. (2012). Size, value, and momentum in international stock returns. Journal of financial economics, 105(3), 457-472.
    Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323).
    Graves, A. Supervised sequence labelling with recurrent neural networks. 2012.
    Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232.
    Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12.
    Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
    Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91.
    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In Neural networks: Tricks of the trade (pp. 9-48). Springer, Berlin, Heidelberg.
    LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
    Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
    Ross, S. (1976). The Arbitrage Theory and Capital Asset Pricing. J. Economic Theory, 13,341-360.
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling,
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442.
    Sharpe, W. F. (1992). Asset allocation: Management style and performance measurement.
    Sims, C. A. (1980). Macroeconomics and reality. Econometrica: journal of the Econometric Society, 1-48.
    Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). ACM.
    李存修, & 尤亭歡. (2015). 臺灣, 香港, 中國大陸三地 ETF 追蹤誤差之研究. 兩岸金融季刊, 3(1), 1-22.
    Description: 碩士
    國立政治大學
    金融學系
    106352041
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106352041
    Data Type: thesis
    DOI: 10.6814/NCCU201900192
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File SizeFormat
    204101.pdf2606KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback