English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718712      Online Users : 645
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/124728
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124728


    Title: 本金增長型可贖回利率交換評價: Hull-White下最小平方蒙地卡羅法與三元樹比較
    Valuation of Callable Accreting Interest Rate Swaps: Comparison between the Least-Squares Monte-Carlo Method and Trinomial Tree under Hull-White Interest Rate Model
    Authors: 鄭文杰
    Cheng, Wen-Chieh
    Contributors: 林士貴
    莊明哲

    Lin, Shih-Kuei
    Chuang, Ming-Che

    鄭文杰
    Cheng, Wen-Chieh
    Keywords: 可贖回利率交換
    百慕達交換選擇權
    最小平方蒙地卡羅法
    三元樹
    Hull and White 短利模型
    Callable interest rate swaps
    Bermudan swaptions
    Least Square Monte Carlo
    Trinomial tree
    Hull and White model
    Date: 2019
    Issue Date: 2019-08-07 16:10:24 (UTC+8)
    Abstract: 本文利用Hull and White 利率模型架構下試圖回答以下兩項問題。第一,本金增長型可贖回利率交換之評價如何進行? 第二,近年來公司經常使用零息可贖回債券作為熱門債券籌資工具之一,並且以本金增長型可贖回利率交換作為對應之風險管理工具,此種風險管理方式是否合適?
    首先,本金增長型可贖回利率交換可以拆解為本金增長型支付者利率交換加上百慕達式本金增長型收取者利率交換選擇權。拆解後的商品,前者可由推導之封閉解求得評價價值,而後者具有提前履約的特性因此無封閉解。為解決提前履約商品無封閉解之評價,本文採用Longstaff and Schwartz (2001) 提出之最小平方蒙地卡羅法與 Hull and White (1994) 提出之三元樹兩種數值方法。最後,由於本金增長型可贖回利率交換之條款設計與零息可贖回債券配合,將造成兩者最佳贖回策略相同但因期初風險管理金額在考慮時間價值下相異,因此前項商品雖可對後者之發行商給予風險管理建議,但前者並非最適風險管理商品。
    This paper discusses two problems based on Hull-White term structure model as follow: (i) How to conduct a valuation of callable accreting interest rate swap(CAIRS) ? (ii) CAIRS is a type of widely used risk management instruments for zero callable bonds (ZCB) . Is it suitable enough to hedge risks of zero callable bond? First, CAIRS can be decomposed into accreting payer interest rate swaps and Bermudan swaptions. Considering financial valuation of both components, the former can be directly valued by the pricing formula, while the latter has no close form due to its early exercise characteristics. In order to solve the problem, the approaches here include LSM method in Longstaff and Schwartz (2001) and trinomial tree in Hull and White (1994) . We find out that the two options embedded in ZCB and CAIRS have same exercise strategy since the terms of the swaps will consist with the bonds in practice. However, the cash flow of risk management in swaps and bonds can be different when considering the discount of time value. Hence, CAIRS are not the best financial instrument for managing risks of zero callable bonds under current design.
    Reference: [1] 林妍如(2018)。零息可贖回債券商品定價:三元樹與最小平方蒙地卡羅方法之比較。碩士論文,國立政治大學,金融學系研究所,台灣台北市。
    [2] 黃一峰2018)。在Hull-White Model之下分析交換銀行贖回策略對(零息)含息可贖回債券影響。碩士論文,國立交通大學,財務金融研究所,台灣新竹市。
    [3] Andersen, L. (1999). A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR market model. Journal of Computational Finance, 3(2), 5-32.
    [4] Brennan, M. J. and Schwartz, E. S. (1977). Convertible bonds: valuation and optimal strategies for call and conversion. The Journal of Finance, 32(5), 1699-1715.
    [5] Feng, Q., Jain, S., Karlsson, P., Kandhai, D., and Oosterlee, C. (2016). Efficient computation of exposure profiles on real-world and risk-neutral scenarios for Bermudan swaptions. Journal of Computational Finance, 20(1), 139–172.
    [6] Hull, J. and White, A. (1990). Pricing Interest-Rate Derivatives Securities. Review of Financial Studies, 3, 573-592.
    [7] Hull, J. and White, A. (1994). Numerical Procedures for Implementing Term Structure Models I:Single-Factor Models. Journal of Derivatives, 2, 7-15.
    [8] Hull, J. (2003). Option, futures and other derivatives, New Jersey: Pearson Education.
    [9] Hippler, S. (2008). Pricing Bermudan Swaptions in the LIBOR Market Model, master dissertation, University of Oxford.
    [10] Jain, S. and Oosterlee, C. (2015). The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks. Applied Mathematics and Computation 269, 412–431
    [11] Longstaff, F.A. and Schwartz, E.S. (2001). Valuing American Options by Simulation: A Simple Least-Squares Approach. Review of Financial Studies, 14, 113-147.
    [12] Rappe, M. and Friberg, K. (2010). Pricing cancellable swaps using tree models calibrated to swaptions, master dissertation, Linköping Institute of Technology
    Description: 碩士
    國立政治大學
    金融學系
    106352016
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106352016
    Data Type: thesis
    DOI: 10.6814/NCCU201900195
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    201601.pdf1820KbAdobe PDF22View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback