English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718372      Online Users : 612
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/124727
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124727


    Title: 基於公開新聞資訊的違約預警模型
    A default prediction model based on soft information from news
    Authors: 呂朋怡
    Lu, Peng-I
    Contributors: 陳威光
    江彌修

    呂朋怡
    Lu, Peng-I
    Keywords: 情感分析
    媒體情緒指標
    Sentiment analysis
    Media sentiment indicator
    Date: 2018
    Issue Date: 2019-08-07 16:10:11 (UTC+8)
    Abstract: 過去違約預警模型之相關研究大多以總體經濟變數、財務比率變數、市場變數等量化資訊進行分析,然而公開之新聞資訊中往往隱含許多有價值的訊息,因此,本研究嘗試爬取美國著名報社之新聞進行情感分析(sentiment analysis) ,剖析公開新聞資訊中與樣本公司相關之新聞內涵,建立基於情感傾向和新聞報導量的媒體情緒量化指標,並採用 logit 模型建構財務預警模型,將媒體情緒量化指標與過去文獻常用之指標進行效能驗證與比較,觀察公開新聞資訊是否能夠提升預測公司違約之準確率。
    實證結果顯示,納入基於公開新聞資訊之媒體情緒量化指標,有助於提升違約預警模型之效能,也就是說,能夠提升模型預測違約發生之準確度;本研究亦進行兩種違約臨界值之比較,Begley, Ming, and Watts (1996) 建議之最適臨界值在模型之效能上,較一般文獻使用之 0.5 臨界值能夠明顯降低型一誤差,因此擁有較好的分類效果。
    As most of the relevant studies of default prediction models are based on quantitative information such as financial ratio variables and market variables, public news information actually contains lots of valuable information. This paper uses Sentiment Analysis technology to extract the information related to sample companies from open news, quantifying the media sentiment indicator, and use Logit model and Probit model to conduct default prediction models. The open news is from The New York Times website and the US Newsstream database which contains Los Angeles Times, Chicago Tribune and The Wall Street Journal, I use VADER (Hutto, 2014) as the main tool of sentiment analysis, and create media sentiment indicator according to the amount of news and sentiment tendency.
    The empirical results show that the media sentiment indicator does improve the effectiveness of the prediction of the corporate default probability. I also compare the effectiveness of the models with two different cut-off points. The optimal cut-off point suggested by Begley, Ming, and Watts (1996) create significantly lower Type I error than the general 0.5 cut-off point, so it has a better classification effect.
    Reference: Altman, Edward I, (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance , 23, 589-609.
    Antweiler, W. and M. Z. Frank, (2004). Is all that talk just noise? The information
    content of internet stock message boards, Journal of Finance, 59, 1259-1294.
    Begley, J., J. Ming, and S. Watts, (1996). Bankruptcy classification errors in the
    1980s: An empirical analysis of Altman’s and Ohlson’s models, Review of Accounting Studies, 1(4), 267-284.
    Bharath, S.T., and Shumway, T., (2008). Forecasting default with the Merton distance to default model, Review of Financial Studies, 21, 1339-1369.
    Crosbie, Peter J., (1999). Modeling default risk. mimeo, KMV Corporation, San
    Francisco, CA.
    Campbell, J.Y., Hilscher, J., and Szilagyi, J., (2008). In search of distress risk, Journal of Finance, 63, 2899-2939.
    Duffie, D., Saita, L., and Wang, K., (2007). Multi-period corporate default prediction
    with stochastic covariates, Journal of Financial Economics, 83, 635-665.
    Duan, J.C., Sun, J. and Wang, T., (2012). Multiperiod corporate default prediction-A
    forward intensity approach, Journal of Econometrics, 170, 191-209.
    Espahibodi, P., (1991). Identification of problem bank and binary choice models,
    Journal of Banking and Finance, 15, 53-71.
    Forss, T. and Sarlin, P., (2017). News-sentiment networks as a company risk indicator, Under review at Journal of Network Theory in Finance.
    Hutto, C.J. and Gilbert, E.E, (2014). VADER: A parsimonious rule-based model for
    sentiment analysis of social media text, Eighth International Conference on Weblogs and Social Media (ICWSM-14), Ann Arbor, MI, June 2014.
    Lopatta, K., Gloger, M.A. and Jaeschke, R., (2017). Can language
    predict bankruptcy? The explanatory power of tone in 10‐K filings, Accounting Perspectives 16(4), 315-343.
    Ohlson, J.A., (1980). Financial ratios and the probabilistic prediction of bankruptcy,
    Journal of Accounting Research, 18, 109-131.
    Odom, M.D. and R. Sharda, (1990). A neural network model for bankruptcy
    prediction, IEEE/INNS, 2, 163-168.
    Singh, L., Scheuermann, P. and Chen, B., (1997). Generating association rules from
    semi-structured documents using an extended concept hierarchy, ACM IKM, 193-200.
    Shumway, T., (2001). Forecasting bankruptcy more accurately: a simple hazard model, Journal of Business, 74, 101-124.
    王懷德,(2003)。KMV模型於國內未上市、未上櫃之公開發行公司之研究。未出版之碩士論文,東吳大學,會計學系研究所。
    古永嘉、陳達新、陳維寧與楊延福,(2007)。以會計資訊及盈餘品質指標預測企業信用風險之研究-區別分析與類神經網路模型之比較。管理科學研究,4(1),43-60。
    李沃牆,(2010)。考量總體變數下的公司違約預測—遺傳規畫決策樹與Logit模型之比較。台灣銀行季刊,61(1),168-186。
    金雪軍、祝宇與楊曉蘭,(2013)。網絡媒體對股票市場的影響——以東方財富網股吧為例的實證研究。新聞與傳播研究,12,36-51。
    林長瑞,(2010)。預測財務危機公司樣本配置之研究。管理與資訊學報,15,1-30。
    唐麗英與林麗甄,(2009)。應用驗證因素分析與Logit模型建構台灣中小企業之財務預警模型。中華管理評論國際學報,12(1),1-23。
    游和正、黃挺豪與陳信希,(2012)。領域相關詞彙極性分析及文件情緒分類之研究。中文計算語言學期刊,17(4),33-47。
    蔡璧徽與黃鈺萍,(2010)。財務危機預測模型之比較分析。當代會計,11(1),51-78。
    盧陽正、魏裕珍、張倉耀與廖婉茹,(2012)。公開新聞之資訊內涵能否增進臺灣企業信用評級慣用指標的預測能力?。台灣金融財務季刊,13(4),27-53。
    Description: 碩士
    國立政治大學
    金融學系
    105352017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352017
    Data Type: thesis
    DOI: 10.6814/NCCU201900279
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    201701.pdf2279KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback