參考文獻: | * [1] P. S. Churchland, T. J. Sejnowski, and T. A. Poggio, The computational brain. MIT press, 2016. * [2] W. Awad and S. ELseuofi, “Machine learning methods for e-mail classification,” International Journal of Computer Applications, vol. 16, no. 1, 2011. * [3] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002. * [4] W. B. Rauch-Hindin, Artificial Intelligence in Business, Science, and Industry: Fun- damentals. Prentice-Hall New Jersey, 1986. * [5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. * [6] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995. * [7] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989. * [8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680. * [9] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolu- tional neural networks for speech recognition,” IEEE/ACM Transactions on audio, speech, and language processing, vol. 22, no. 10, pp. 1533–1545, 2014. * [10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Advances in neural information processing systems, 2014, pp. 3104– 3112. * [11] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recur- rent neural networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–6649. * [12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. * [13] F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual predic- tion with LSTM. IET, 1999. * [14] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with policy gradient.” in AAAI, 2017, pp. 2852–2858. * [15] A. Creswell and A. A. Bharath, “Denoising adversarial autoencoders,” IEEE trans- actions on neural networks and learning systems, no. 99, pp. 1–17, 2018. * [16] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen- coders,” arXiv preprint arXiv:1511.05644, 2015. * [17] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn- ing with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015. * [18] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im- proved techniques for training gans,” in Advances in Neural Information Processing Systems, 2016, pp. 2234–2242. * [19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and compos- ing robust features with denoising autoencoders,” in Proceedings of the 25th inter- national conference on Machine learning. ACM, 2008, pp. 1096–1103. * [20] P. B. Myszkowski and B. Buczek, “Growing hierarchical self-organizing map for searching documents using visual content,” in 2011 Federated Conference on Com- puter Science and Information Systems (FedCSIS). IEEE, 2011, pp. 77–81. * [21] J. Dai, Y. Lu, and Y.-N. Wu, “Generative modeling of convolutional neural net- works,” arXiv preprint arXiv:1412.6296, 2014. * [22] J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu, “A theory of generative convnet,” in Interna- tional Conference on Machine Learning, 2016, pp. 2635–2644. * [23] J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu, “Cooperative training of descriptor and generator networks,” arXiv preprint arXiv:1609.09408, 2016. * [24] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good semi- supervised learning that requires a bad gan,” in Advances in Neural Information Processing Systems, 2017, pp. 6510–6520. * [25] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image models using a laplacian pyramid of adversarial networks,” in Advances in neural information processing systems, 2015, pp. 1486–1494. * [26] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in Neural Information Processing Systems, 2016, pp. 4565–4573. * [27] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation using adversarial networks,” arXiv preprint arXiv:1611.08408, 2016. * [28] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in neural information processing systems, 2016, pp. 469–477. * [29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” arXiv preprint, 2017. * [30] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing motion and content for video generation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1526–1535. * [31] M. Saito, E. Matsumoto, and S. Saito, “Temporal generative adversarial nets with singular value clipping,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2830–2839. * [32] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynam- ics,” in Advances In Neural Information Processing Systems, 2016, pp. 613–621. * [33] J. Xie, R. Gao, Z. Zheng, S.-C. Zhu, and Y. N. Wu, “Learning dynamic generator model by alternating back-propagation through time,” arXiv preprint arXiv:1812.10587, 2018. * [34] A. Hadriche, N. Jmail, and R. Elleuch, “Different methods of partitioning the phase space of a dynamic system,” International Journal of Computer Applications, vol. 93, pp. 1–5, 05 2014. * [35] M. Dittenbach, D. Merkl, and A. Rauber, “The growing hierarchical self-organizing map,” in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 6. IEEE, 2000, pp. 15–19. * [36] J. Macqueen, “Some methods for classification and analysis of multivariate observa- tions,” in In 5-th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. * [37] T. Kohonen, Neurocomputing: Foundations of Research, J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988. [Online]. Available: http://dl.acm.org/citation.cfm?id=65669.104428 * [38] M. D. E. P. Andreas Rauber, Dieter Merkl, “The growing hierarchical self-organizing map.” [Online]. Available: http://www.ifs.tuwien.ac.at/∼andi/ghsom/ * [39] V. Rajagopalan, A. Ray, R. Samsi, and J. Mayer, “Pattern identification in dynamical systems via symbolic time series analysis,” Pattern Recognition, vol. 40, no. 11, pp. 2897–2907, 2007. * [40] T. Y. Lin, H. H. C. Chuang, and F. Yu, “Tracking supply chain process variabil- ity with unsupervised cluster traversal,” in 2018 IEEE 16th Intl Conf on Depend- able, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 966–973. * [41] J. R. Quinlan et al., “Bagging, boosting, and c4. 5,” in AAAI/IAAI, Vol. 1, 1996, pp. 725–730. * [42] J. Demˇsar, T. Curk, A. Erjavec, Cˇrt Gorup, T. Hoˇcevar, M. Milutinoviˇc, M. Moˇzina, M. Polajnar, M. Toplak, A. Stariˇc, M. Sˇtajdohar, L. Umek, L. Zˇagar, J. Zˇbontar, M. Zˇitnik, and B. Zupan, “Orange: Data mining toolbox in python,” Journal of Machine Learning Research, vol. 14, pp. 2349–2353, 2013. [Online]. Available: http://jmlr.org/papers/v14/demsar13a.html |