政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/119034
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52627434      Online Users : 501
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119034


    Title: 基於貝氏方法應用於樣條迴歸節點選取
    A Bayesian Knots Selection Method for Regression Spline Estimation
    Authors: 楊博崴
    Yang, Bo-Wei
    Contributors: 黃子銘
    楊博崴
    Yang, Bo-Wei
    Keywords: 無母數迴歸
    樣條函數
    貝氏變數選取法
    吉布斯採樣
    Nonparametric regression
    Spline functions
    Bayesian variable selection
    Gibbs sampling
    Date: 2018
    Issue Date: 2018-07-30 14:53:53 (UTC+8)
    Abstract: 在無母數迴歸中,經常透過樣條函數來近似迴歸函數,並利用最小平方法進行估計。由於樣條函數節點的個數與位置會影響到最終的近似效果,本文以截斷冪函數作為樣條函數的基底,並藉由三種變數選取方法篩選樣條函數的節點。第一與第二種方法是透過假設檢定判斷重要變數的向前與向後選取法,並將其檢定統計量中共同變異數的估計式修改為較穩健的估計式。第三種方法為貝氏變數選取法。給定適合的參數先驗分配,並透過潛在變量之後驗機率選取重要變數,且過程中以分量式吉布斯採樣減輕計算負擔。
    最後,本文以ISE(Integrated squared error)做為評估準則,比較前兩種與第三種方法間的估計效果。我們模擬不同平滑程度的函數,並產生不同樣本數與誤差的資料。發現當函數圖型較平滑時,不論樣本與資料誤差大小,向前與向後選取法之估計效果皆優於貝氏變數選取法,且後者有選取不必要節點的問題。而貝氏方法在較陡峭的函數圖型且資料誤差大時,相較於其他兩種方法會有較好的估計效果。
    In nonparametric regression, it is common to approximate the regression fun-ction using a spline function, and then obtain the regression function estimate using least squares. When approximating the regression function using a spline, it is imp-ortant to choose the number of knots and knot locations. In this thesis, we use three variable selection methods to select knots. The first and second methods are forward and backward selection. We replace the usual residual-based variance estimator in the test statistics by a more robust estimator. The third method is the Bayesian variable selection method. Given the appropriate parameters of the prior distribution, variables are selected based on the posterior probabilities of latent variables. In the process of computing the posterior probabilities, the componentwise Gibbs sampler is used to reduce the computational burden.
    Simulation experiments are carried out in this study to compare the three me-thods in a nonparametric regression setting. ISE (integrated squared error) is used to evaluate knot selection results. In those experiments, regression functions with dif-ferrent degrees of smoothness, and data of different sample sizes and error variance levels, are considered. It is found that when the function is relatively smooth, both the forward and backward selection methods are superior to the Bayesian variable select-ion method regardless of the sizes of the sample and the levels of error variance, and the Bayesian method has the problem of selecting unnecessary knots. The Bayesian method outperforms the other two methods when the regression function has a steep pattern and the error variance is large.
    Reference: [1] A.J. Miller : Subset Selection in Regression. Monographs on Statistics and Applied Probability 40(1990)

    [2] Barbieri, M., Berger, J.O. : Optimal predictive model selection. Ann. Stat. 32, 870–897(2004)

    [3] Carl De Boor : A practical guide to splines; rev. ed. Applied mathematical sciences. Springer, Berlin (2001)

    [4] Chen, Ray-Bing , Chu, Chi-Hsiang, Lai, Te-You , Wu, Ying Nian : Stochastic matching pursuit for Bayesian variable selection. Statistics and Computing, 21, 247–259(2011)

    [5] Chen, Ray-Bing and Lai, Te-You : Variable selection via MCMC matching pursuit. Technical Report, Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan(2007)

    [6] Edward I. George, Robert E. McCulloch : Variable Selection Via Gibbs Sampling. Journal of the American Statistical Association, 88, 881-889(1993)

    [7] Wu, Y.-N., Zhu, S.-C., Guo, C. : Statistical modeling of texture sketch. Proceedings of European Conference of Computer Vision, 240–254 (2002)

    [8] Xuming He, Lixin Shen, Zuowei Shen : A data-adaptive knot selection scheme for fitting splines. IEEE Signal Processing Letters, 8, 137-139(2001)
    Description: 碩士
    國立政治大學
    統計學系
    105354009
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105354009
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.STAT.013.2018.B03
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File SizeFormat
    400901.pdf1482KbAdobe PDF2118View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback