Reference: | 中文部分
1.陳松男,2008,金融工程學-金融商品創新與選擇權理論,三版,台北:新陸書局。
2.陳松男,2006,利率金融工程學-理論模型及實務應用,台北:新陸書局。
3.黃貞樺,2007,LIBOR 市場模型下可贖回區間計息連動債券之評價與分析,政大金融研究所碩士論文。
英文部分
1. Andersen, T., & Bollerslev, T., 1998, “The Dynamic International Optimal Hedge Ratio”, International Journal of Econometrics and Financial Management, Vol.2,No.3, 82-94.
2. Black, F., Derman, E., & Toy, W., 1990, “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options”, Financial Analysts Journal, 24–32.
3. Bollerslev, T., 1986, “Generalized autoregressive conditional heteroskedasticity”,Journal of Econometrics , Vol.31, 307-327.
4. Brace, A., D. Gatarek., & M. Musiela., 1997, “The Market Model of Interest Rate Dynamics”, Mathematical Finance, Vol.7, 127-155.
5. Brigo, D., & F. Mercurio., 2001, “Interest Models, Theory and Practice”. Springer-Verlag.
6. Cox, J.C., J.E. Ingersoll., & S.A. Ross., 1985, “A Theory of the Term Structure of Interest Rates”, Econometrica, Vol.53, 385–407.
7. Decaudaveine, M., 2016, “A Review of CMS Swap Pricing Approaches”, Paris Dauphine University Master Thesis.
8. Engle, R., & Kroner. F., 1995, “Multivariate simultaneous generalized ARCH”, Econometric Theory, Vol.11, 122–150.
9. Engle, R., 1982, “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”, Econometrica, Vol.50, 987–1007.
10. Engle, R., 2002, “Dynamic conditional correlation—a simple class of multivariate GARCH models”, Journal of Business and Economic Statistics, Vol.20, 339–350.
11. F.C .Palm., 1996, “GARCH models of volatility”, Handbook of Statistics, Vol. 14,209-240.
12. Glasserman, P., 2004, “Monte Carlo Method in Financial Engineering”, New York, Springer.
13. Glasserman, P., & Yu, B., 2004, “Number of Paths Versus Number of Basis Functions in American Option Pricing”, Annuals of Applied Probability, Vol.14,
No.4, 2090-2119.
14. Heath, D., Jarrow, R., & Morton, A., 1990, “Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation”, Journal of Financial and
Quantitative Analysis, No.25, 419-440.
15. Ho, T.S.Y., & Lee, S.B., 1986, “Term structure movements and pricing interest rate contingent claims”, Journal of Finance, Vol.41, No.5, 1011-1029.
16. Hull, J., & White, A., 1996, “Using Hull-White interest rate trees”, Journal of Derivatives, Vol.3, No.3, 26–36.
17. Jamshidian, F., 1997, “LIBOR and Swap Market Models and Measures”, Finance and Stochastics, Vol.1, 293-330.
18. Lin, W.L., 1992, “Alternative estimators for factor GARCH models—a Monte Carlo comparison”, Journal of Applied Econometrics, Vol.7, 259–279.
19. Longstaff, F., & Schwartz, E., 2001, “Valuing American Options by Simulation: A Simple Least-Squares Approach”, The Review of Financial Studies, Vol. 14, No.1, 113-147.
20. Lu. Y & Neftci. S., 2003, “Convexity Adjustments and Forward Libor Model: Case of Constant Maturity Swaps”, Working Paper No. 115, National Centre of Competence in Research Financial Valuation and Risk Management.
21. Plesser, A., 2003, “Mathematical foundation of convexity correction”, Quantitative Finance, Vol. 3, 59-65.
22. Rebonato, R., 2002, “Modern Pricing of Interest-Rate Derivatives: The LIBOR Market Model and Beyond”, Princeton University. Press, Princeton
23. Rebonato, R., 1998, “Interest Rate Option Models”, Second Edition, Wiley, Chichester.
24. Rebonato, R., 1999, “Volatility and Correlation: In the Pricing of Equity, FX and Interest-Rate Options”, John Wiley & Sons Ltd., West Sussex.
25. Shreve, S., 2004, “Stochastic Calculus for Finance II”, Springer-Verlag, New York.
26. Svoboda, S., 2004, “Interest Rate Modeling”, Palgrave Macmillan, New York.
27. Tse Y.K., & Tsui A.K.C., 2002, “A multivariate GARCH model with time-varying correlations”, Journal of Business and Economic Statistics, Vol. 20, 351–362.
28. Vasicek, O., 1977, “An equilibrium characterization of the term structure”, Journal of Financial Economics, Vol. 5, No.2, 177–188.
29. Vojtek, M., 2004, “Calibration of Interest Rate Models -Transition Market Case”, Working Paper, Center for Economic Research and Graduate Education of Charles
University. |