Reference: | [1] S. I. Chiu and K.W. Hsu, “Information diffusion on Facebook: A case study of the sunflower student movement in Taiwan,” in International Conference in Ubiquitous Information Management and Communication, 2017, pp. 48. [2] N. Spasojevic, Z. Li, A. Rao, and P. Bhattacharyya, “When-to-post on social networks,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD `15), New York, 2015, pp. 2127-2136. [3] https://www.internetworldstats.com/ [4] A.Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, 2010. “Predicting elections with twitter: What 140 characters reveal about political sentiment,” in Procedings of the Fourth International Conference on Weblogs and Social Media, Washington, USA, 2010, pp. 178-185. [5] S. Hong and D. Nadler, “Which candidates do the public discuss online in an election campaign?: The use of social media by 2012 presidential candidates and its impact on candidate salience,” Government Information Quarterly, vol. 29, no. 4, pp. 455-461, 2012. [6] R. P. Carlisle, Encyclopedia of politics: The Left and the Right. Thousand Oaks: SAGE Publishing, 2005. [7] E. C. Costa, A. B. Vieira, K. Wehmuth, A. Ziviani, and A. P. C. Da Silva, “Time centrality in dynamic complex networks,” Advances in Complex Systems, vol. 18, 07n08, 2015. [8] T. J. Berners-Lee, “Information Management: A Proposal,” CERN internal proposal. March 1989. [9] S. S. McPherson, Tim Berners-Lee: Inventor of World Wide Web. Twenty-First Century Books, 2009. [10] T. o`Reilly, What is web 2.0, O`Reilly Media, Inc., 2009. [11] A.M. Kaplan and M. Haenlein. 2010. “Users of the World Unite! The Challenges and Opportunities of Social Media,” Business Horizons, vol. 53, no.1, pp. 59-68. [12] S. K. Pal, “Web 2.0: A New Tool for Teaching and Learning in Electronic Environment,” Journal of the young librarians association, 05, pp. 107-113. [13] L. Zhang, and W. Tu, “Six degrees of separation in online society”, in Proceedings of the WebSci’09, Society On-Line, Athens, Greece, pp. 1-5, 2009. [14] A. Quan-Haase and A. L. Young, “Uses and gratifications of social media: a comparison of Facebook and instant messaging,” Bulletin of Science Technology and Society, vol. 30, no. 5, pp. 350-361, 2010. [15] D. Nations, “What is social media? Explaining the big trend,” Lifewire, Dec. 7, 2016. [16] A. Hermida, S. C. Lewis, and R. Zamith, “Sourcing the Arab Spring: A case study of Andy Carvin`s sources on Twitter during the Tunisian and Egyptian revolutions,” J. Comp.-Med. Commun., vol. 19, no. 3, pp. 479-499, April 2014. [17] F. Köbler, C. Riedl, C. Vetter, J. Leimeister, and H. Krcmar, “Social connectedness on Facebook - An explorative study on status message usage,” in Proceedings of the 16th Americas Conference on Information Systems, 2010. [18] Y. Marzouki, I. Skandrani-Marzouki, M. Béjaoui, H. Hammoudi, and T. Bellaj, 2012. “The contribution of Facebook to the 2011 Tunisian revolution: A cyberpsychological insight,” Cyberpsychology, Behavior, and Social Networking, vol. 15, no. 5, pp. 237-244, May 2012. [19] K. Starbird and L. Palen, “(How) will the revolution be retweeted? Information diffusion and the 2011 Egyptian uprising,” in Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, New York, 2012, pp. 7-16. [20] F. Y. Wang, “Social media and the jasmine revolution,” IEEE Intelligent Systems, vol. 26, no. 2, pp. 2-4, March 2011. [21] V. Wulf, K. Misaki, M. Atam, D. Randall, and M. Rohde, “” in Proceedings of the 2013 Conference on Computer Supported Cooperative Work, New York, 2013, pp. 1409-1418. [22] K. Böhm, “Social media and the sunflower student movement,” M.S. thesis, National Chengchi University, 2015. [23] https://www.diffen.com/ [24] S. Phillips, A brief history of Facebook, the Guardian, September 17, 2015. [25] M. Barthel, “The evolving role of news on Twitter and Facebook,” Pew Research Center, vol. 14, 2015. [26] D. Kirkpatrick, The Facebook Effect: The Inside Story of the company that is Connecting the World, Press: Simon and Schuster, 2011. [27] T. Yang, “The Decision Behavior of Facebook Users,” Journal of Computer Information Systems, vol. 52, no. 3, pp. 50-59, 2012. [28] M. Trusov, A. V. Bodapati, and R. E. Bucklin, “Determining Influential Users in Internet Social Networks,” Journal of Marketing Research, vol. 47, no. 4, pp. 643-658, 2010. [29] D. J. Hughes, M. Rowe, M. Batey, and A. Lee, “A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage,” Computers in Human Behavior, vol. 28, no. 2, pp. 561-569, 2012. [30] R. E. Wilson, S. D. Gosling and L. T. Graham, “A Review of Facebook Research in the Social Sciences,” Perspectives on Psychological Science, vol. 7, no. 3, pp. 203-220, 2012. [31] A. Ramzy, “As Numbers Swell, Students Pledge to Continue Occupying Taiwan`s Legislature,” New York Times, Retrieved 22 March 2014. [32] J. M. Cole, “Riot Police Crack Down on Taiwanese Protesters,” The Diplomat, Retrieved 27 March 2014. [33] E. Gilbert and K. Karahalios, “Predicting tie strength with social media,” in Proceedings of the 27th International Conference on Human Factors in Computing Systems, New York, pp. 211-220, 2009. [34] D. Ronfeldt, J. Arquilla, G. E. Fuller, and M. Fuller, The Zapatista “Social Netwar” in Mexico, RAND Corporation, 1999. [35] M. E. Martinez-Torres, “Civil Society, the Internet, and the Zapatistas,” Peace Review: A Journal of Social Justice, vol. 13, no. 3, pp. 347-355, 2001. [36] P. N. Howard and M. M. Hussain, Democracy’s fourth wave? Digital media and the Arab Spring. Oxford University Press, 2013. [37] B. Gleason, “#Occupy Wall Street: Exploring informal learning about a social movement on twitter,” American Behavioral Scientist, vol. 57, no. 7, pp. 966-982, 2013. [38] A. Guille and H. Hacid, “A Predictive Model for the Temporal Dynamics of Information Diffusion in Online Social Networks,” in WWW 2012 International World Wide Web Conference Committee, Lyon, 2012, pp. 1145-1152. [39] A. Guille, H. Hacid, and C. Favre, “Predicting the Temporal Dynamics of Information Diffusion in Social Networks,” ERIC Lab Report, 2012. [40] W. H. Chen, “Information diffusion model of online social networks: A case study of Facebook,” M.S. thesis, National Chiao Tung University, 2012. [41] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec, “Can cascades be predicted?” in Proceedings of the 23rd International Conference on World Wide Web, New York, 2014, pp. 925-936. [42] K. Lerman and R. Ghosh, “Information contagion: An empirical study of the spread of news on Digg and Twitter social networks,” in Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, 2010, pp. 90-97. [43] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M, Hurst, “Patterns of cascading behavior in large blog graphs,” in Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 551-556. [44] J. Yang and S. Counts, “Predicting the speed, scale, and range of information diffusion in Twitter,” in Proceedings of the International AAAI Conference on Weblogs and Social Media, 2010, pp. 355-358. [45] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social networks in information diffusion,” in Proceedings of the 21st international conference on World Wide Web, 2012, pp. 519-528. [46] K. Lerman and R. Ghosh, “Information contagion: An empirical study of the spread of news on Digg and Twitter social networks,” in Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, 2010, pp. 90-97. [47] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst, “Patterns of cascading behavior in large blog graphs,” in Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 551-556. [48] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also for the information sciences,” Journal of Information Science, vol. 28, no. 6, pp. 441-453, 2002. [49] H. R. Nasrinpour, M. R. Friesen, and R. D. McLeod, “An angle-based model of message propagation in the Facebook Electronic social network,” Social and information networks, 2016. [50] A. Guille, “Information Diffusion in Online Social Networks,” in Proceedings of the 2013 SIGMOD/PODS Ph. D. symposium, 2013, pp. 31-36. [51] X. Liu, D. N. Yang, M. Ye, and W. C. Lee, “U-skyline: a new skyline query for uncertain databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 4, pp. 945-960, 2013. [52] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in International Conference on Data Engineering, Heidelberg, 2001, pp. 421-430. [53] K. L. Tan, P. K. Eng, and B. C. Ooi., “Efficient progressive skyline computation,” in Proceedings of the 27th International Conference on Very Large Data Bases, Roma, 2001, pp. 301-310. [54] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm for skyline queries,” in Proceedings of ACM SIGMOD International Conference on Management of Data, San Diego, 2003, pp. 467-478. [55] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in database systems,” ACM Transactions on Database Systems, vol. 52, no. 3, pp. 41-82, Mar. 2005. [56] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting: theory and optimizations,” in Intelligent Information Processing and Web Mining, Springer Berlin Heidelberg, 2005, pp. 595-604. [57] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presorting,” in International Conference on Data Engineering, Bangalore, 2003, pp. 717-719. [58] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in large data sets,” in Proceedings of the 31th International Conference on Very Large Data Bases, Trondheim, 2005, pp. 229-240. [59] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline computation using object-based space partitioning,” in Proceedings of ACM SIGMOD International Conference on Management of Data, 2009, pp. 483-494. [60] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an online algorithm for skyline queries,” in Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, 2002, pp. 275-286. [61] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline evaluation,” ACM Transactions on Database Systems, vol. 33, no. 4, pp. 1-45, Nov. 2008. [62] J. L. Bentley, K. L. Clarkson, and D. B. Levine, “Fast linear expected-time algorithms for computing maxima and convex hulls,” Algorithmica, vol. 9, no. 2, pp. 179-187, Feb. 1993. [63] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” Journal of the ACM, vol. 22, no. 4, pp. 469-476, Oct. 1975. [64] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, Inc., 1985. [65] M. J. Atallah and Y. Qi, “Computing all skyline probabilities for uncertain data,” in Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, Providence, Rhode Island, 2009, pp. 279-287. [66] M. J. Atallah, Y. Qi, and H. Yuan, “Asymptotically efficient algorithms for skyline probabilities of uncertain data,” ACM Transactions on Database Systems, vol. 36, no. 2, pp. 1-28, May 2011. [67] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data,” in Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, 2007, pp. 15-26. [68] B. Jiang, J. Pei, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods,’ Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 1-39, 2012. [69] Q. Zhang, P. Ye, X. Lin, and Y. Zhang, “Skyline probability over uncertain preferences,” in Proceedings of the 16th International Conference on Extending Database Technology, Genoa, 2013, pp. 395-405. [70] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvag, “Efficient processing of top-k spatial preference queries,” in Proceedings of the Very Large Data Bases Endowment, vol. 4, no. 2, pp. 93-104, Nov. 2010. [71] A. Cosgaya-Lozano, A. Rau-Chaplin, and N. Zeh, “Parallel computation of skyline queries,” in Proceedings of the International Symposium on High Performance Computing Systems and Applications, Saskatoon, 2007, pp. 1-12. [72] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E. Abbadi, “Parallelizing skyline queries for scalable distribution,” in Proceedings of the 10th International Conference on Advances in Database Technology, Munich, 2006, pp. 112-130. [73] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel distributed processing of constrained skyline queries by filtering,” in IEEE 24th International Conference on Data Engineering, Cancun, 2008, pp. 546-555. [74] H. Köhler, J. Yang, and X. Zhou, “Efficient parallel skyline processing using hyperplane projections,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, Athens, 2011, pp. 85-96. [75] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based space partitioning for efficient parallel skyline computation,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, 2008, pp. 227-238. [76] S. I. Chiu and K. W. Hsu, “Skyline query processing for rating data,” in Pacific Asia Conference on Information Systems, Chiayi, 2016, p. 305. [77] S. I. Chiu and K. W. Hsu, “Efficiently processing skyline query on multi-instance data,” Journal of Information Processing Systems, vol. 13, no 5, pp. 1277-1298, Nov. 2017. [78] N. Bobbio, A. Cameron, Left and Right: The Significance of a Political Distinction, Chicago: University of Chicago Press, 1996. [79] T. Ball, The Cambridge History of Twentieth-Century Political Thought (Reprint. ed.). Cambridge: Cambridge University Press, 2005. [80] J. E. Goldthorpe, An Introduction to Sociology (Third ed.). Cambridge: Cambridge University Press, 1985. [81] C. T. Goodsell, “The Architecture of Parliaments: Legislative Houses and Political Culture,” British Journal of Political Science, vol.18, no. 3, pp.287-302, 1968. [82] D. Gellene, “Study finds left-wing brain, right-wing brain”, Los Angeles Times, 2010. [83] H. McClosky and D. Chong, “Similarities and Differences Between Left-Wing and Right-Wing Radicals”, British journal of political science, vol. 15, no. 3, pp.329-363, 1985. [84] R. A. Reuss and J. C. Reuss, “American folk music and left-wing politics,” Scarecrow Press, No. 4, pp. 1927-1957, 2000. [85] R. O. Paxton, The Anatomy of fascism, Vintage, 2007. [86] S. Utz, “The (potential) benefits of campaigning via social network sites,” Journal of computer-mediated communication, vol. 14, no. 2, pp. 221-243, 2009. [87] A. Momoc. 2012. “Social media in Romania: left wing or right wing? The case of the 2009 presidential campaign: Blogs and Facebook,” Journal of Media Research, vol. 2, no. 13, pp.79-95, 2012. [88] V. Gupta, and G. S. Lehal, “A survey of text mining techniques and applications,” Journal of emerging technologies in web intelligence, vol. 1, no. 1, pp. 60-76, 2009. [89] R. M. Bonf, C. J. Fariss, J. J. Jones, A. D. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler, “A 61-million-person experiment in social influence and political mobilization,” Nature, vol. 489, no. 7415, pp. 295-298, 2012. [90] E. Kouloumpis, T. Wilson, and J. D. Moore, “Twitter sentiment analysis: The good the bad and the OMG!,” in The International AAAI Conference on Weblogs and Social, 2011, pp. 538-541. [91] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and Trends in Information Retrieval, vol. 2, no. 1-2, pp. 1-135, 2008. [92] V. Hatzivassiloglou and K. McKeown, “Predicting the semantic orientation of adjectives,” in Proc. of ACL, 1997, pp. 174-181. [93] A. Esuli and F. Sebastiani, “SentiWordNet: A publicly available lexical resource for opinion mining,” in Processing of the 4th International Conference on Language Resources and Evaluation, 2006, pp. 417-422. [94] P. Turney, “Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002, pp. 417-424. [95] T. Mullen and R. Malouf, “A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse,” in AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, 2006, pp. 159-162. [96] H. Yu and V. Hatzivassiloglou, “Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences,” in Proceedings of the 2003 conference on Empirical methods in natural language processing, 2003, pp. 129-136. [97] S.-M. Kim and E. Hovy, 2004. “Determining the sentiment of opinions,” in Proceedings of the 20th international conference on Computational Linguistics, Geneva, 2004, p. 1367. [98] C. Williams and G. Gulati, “What is a social network worth? Facebook and vote share in the 2008 presidential primaries,” in Annual Meeting of the American Political Science Association, 2008, pp. 1-17. [99] J. E. Chung and E. Mustafaraj, “Can collective sentiment expressed on twitter predict political elections?” in AAAI Conference on Artificial Intelligence, 2011, pp. 1770-1771. [100] H. Wang, D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan, “A system for real-time twitter sentiment analysis of 2012 us presidential election cycle,” in Proceedings of the ACL 2012 System Demonstrations, Association for Computational Linguistics, 2012, pp. 115-120. [101] A. Bermingham and A. Smeaton, “On using Twitter to monitor political sentiment and predict election results,” in Proceedings of the Workshop on Sentiment Analysis where AI meets Psychology, 2011, pp. 2-10. [102] A. Ceron, L. Curini, S. M. Iacus, and G. Porro, “Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France,” New Media & Society, vol. 16, no. 2, pp. 340-358, 2014. [103] I. Rish, “An empirical study of the naive Bayes classifier,” in IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3, no. 22, pp, 41-46, 2001. [104] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, et al., “Top 10 algorithms in data mining, “ Knowledge and Information System, vol. 14, no. 1, pp. 1-37, 2007. [105] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statistician, vol. 46, no. 3, pp. 175-185, 1992. [106] M. Kuramochi and G. Karypis, “Gene Classification using Expression Profiles: A Feasibility Study,” International Journal on Artificial Intelligence Tools, vol. 14, no. 4, pp. 641-660, 2005. [107] V. Vapnik, The nature of statistical learning theory, Springer, New York, 2013. [108] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119-139. [109] J. R. Quinlan, “Simplifying decision trees,” International journal of man-machine studies, vol. 27, no. 3, pp. 221-234, 1987. [110] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and regression trees, Wadsworth, Belmont, 1984. [111] H. X. Wei, ShareFlow: Information Diffusion Visualization with Social Media, M.S. thesis, National Chengchi University, 2015. [112] K. W. Hsiung, TopicWave: Visually Exploring Topics of Hierarchical Time-Oriented Data, M.S. thesis, National Chengchi University, 2015. [113] H. W. Liu, “Function analysis on Facebook ‘fan pages’: A big data approach,” in 2nd Annual International Conference on Social Sciences, 2015. [114] H. W. Liu, I. Y. Lin, M. T. Chi, and K. W. Hsu, Understanding ‘the user-generated’: The construction of the ‘ABC model’ and the imagination of ‘digital humanity’, Springer, pp. 200-240, 2017. [115] W. Bryc, The Normal Distribution: Characterizations with Applications, Springer-Verlag, New York, Inc., 1995. [116] G. Casella and R. L. Berger, Statistical Inference, 2nd Edition, Duxbury, 2001. [117] M. Hazewinkel, Encyclopedia of Mathematics, Springer Netherlands, 1990. [118] H. Wang, Y. Lu, and C. X. Zhai, “Latent Aspect Rating Analysis without Aspect Keyword Supervision,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011, pp. 618-626. [119] H. Wang, Y. Lu, and C. X. Zhai, “Latent aspect rating analysis on review text data: a rating regression approach,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2010, pp. 783-792. [120] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” SIGKDD Explor. Newsl. vol. 11, no. 1, pp. 10-18, Nov. 2009. [121] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters,” in Proceedings Int`l Conference Machine Learning, 2000, pp.727-734. [122] R. Sharma, M. A. Alam, and A. D. Rani, “K-Means Clustering in Spatial Data Mining using Weka Interface,” in International conference on advances in communication and computing technologies (ICACACT), vol. 26, 2012, p. 30. [123] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters,” in Proceedings of the Seventeenth International Conference on Machine Learning, San Francisco, 2000, pp. 727-734. [124] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130-137, 1980. [125] P. Willett, “The porter stemming algorithm: then and now,” Program, vol. 40, no. 3, pp. 219-223, 2006. [126] M. Hu and B. Liu, “Mining and Summarizing Customer Reviews,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, 2004, pp. 168-177. [127] J. Kamps, M. Marx, R. o. Mokken, and M. d. Rijke, “Using WordNet to measure semantic orientation of adjectives,” in Proceedings of the 4th International Conference on Language Resources and Evaluation, 2004, pp. 1115-1118. |