English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51689538      Online Users : 598
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/118238
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118238


    Title: 市場因子於倒傳遞類神經網路對信用評等之影響
    The Effect of Market Factor in the Back Propagation Neural Network on Credit Rating
    Authors: 饒宇軒
    Jao, Yu-Hsuan
    Contributors: 廖四郎
    Liao, Szu-Lang
    饒宇軒
    Jao, Yu-Hsuan
    Keywords: 倒傳遞類神經網路模型
    信用評等
    KMV模型
    違約距離
    Back propagation neural network model
    Credit rating
    KMV model
    Distance to default
    Date: 2018
    Issue Date: 2018-07-03 17:26:28 (UTC+8)
    Abstract: 在2007年的金融危機後,外部評等機構信用評等的可信度受到打擊,外部信用評等機構的信用評等無法反映公司的經營能力。而BASEL II協定中,允許銀行經過主管機關核准後,使用內部模型法評估自身的信用風險。在這樣的條件下,銀行為了加強對自身信用風險的控管,我認為銀行將會開始發展自己內部的信用評等模型。
    本研究將變數分為財務變數和市場變數,財務變數是根據資產管理能力、獲利能力、財務結構和償債能力這四項因素,選取15項財務指標;市場變數為該公司的股票波動度和違約距離(Distance to Default, DD)作為市場變數。研究樣本為2000年到2008年半導體公司每季的信用評等將其分為三類,使用倒傳遞類神經網路模型進行分析。本研究中有模型A和模型B,模型A為只使用財務變數的倒傳遞類神經網路,模型B為使用財務變數和市場變數的倒傳遞類神經網路,並比較兩個模型的預測準確度。
    經由實證結果發現加入違約距離後,信用評等為第三類的資料能夠被有效的預測到,這是只使用財務比率為變數的倒傳遞類神經網路所無法辦到的。加入違約距離後,同時也使得整體準確度也由55.56%提升為58.89%。
    In the financial crisis of 2007, the credibility of external rating agencies was undermined and the credit ratings of external credit rating agencies could not reflect the company`s operating capabilities. In the BASEL II agreement, banks are allowed to pass the approval of the competent authority and use the internal model method to assess their own credit risk. Under such conditions, in order to strengthen the bank`s control over its own credit risk, I think banks will begin to develop their own internal credit rating models.
    This study divides the variables into financial variables and market variables. The financial variables are based on four factors, asset management capabilities, profitability, financial structure and solvency. In the study, 15 financial indicators are selected as a financial variable. Market variables are the company`s stock volatility and Distance to Default (DD) as a market variable. The sample for the study was divided into three categories for each quarter of the credit rating of semiconductor companies from 2000 to 2008, and was analyzed using back propagation neural network model. In this study, there are Model A and Model B. Model A is a back propagation neural network that only uses financial variables. Model B is a back propagation neural network that uses financial variables and market variables. In the study, prediction accuracy of the two models is compared.
    Through empirical results, it is found that when the Distance to Default (DD) is added, the credit rating of the third type of data can be effectively predicted. This is impossible to achieve using only the back propagation neural network with financial variables. After adding the Distance to Default (DD), it also increased the overall accuracy from 55.56% to 58.89%.
    Reference: 一、中文部分
    王濟川、郭志剛,(2003)。Logistic迴歸模型-方法及應用,台北市:
    五南圖書。
    古永嘉、陳達新、陳維寧、楊延福,(2007)。以會計資訊衡量企業信用
    風險:區別分析與類神經網路模型之比較與應用。管理科學研究
    期刊,第四卷,第一期,第39-56頁。
    台灣金融研訓院編輯委員會,(2013)。巴賽爾資本協定三(Basel III)
    實務應用。台北市:台灣金融研訓院。
    朱竣平(2006)。信用評等對公司違約率及財務危機預測之研究。真理大學
    財經研究所碩士論文。
    洪明欽、張揖平、陳昱陵、陳和貴,(2007)。信用評分模型區別力之
    穩健性研究。金融風險管理季刊,第三卷,第四期,第1-23頁。
    陳達新、周恆志,(2014)。財務風險管理(三版):工具、衡量與未來
    發展。台北:雙葉書廊。
    許峻賓(2004)。KMV模型於預警系統之實證研究。真理大學財經研究所碩士
    論文。
    張大成、林郁翎、林修逸,(2007)。應用市場資訊於企業危機預警之
    研究。運籌與管理學刊,6(1),1-18。
    黃明祥、許光華、黃榮彬、陳鈺玲,(2005)。KMV模型在台灣金融機構信用
    風險管理機制有效性之研究。財金論文叢刊,第三期,第29-50頁。
    單良、蒙志偉、郭姣君、王慧喧,(2010)。信用評等模型的12堂課—以消費
    金融為例。台北市:台灣金融研訓院。
    葉怡成,(2001)。應用類神經網路。台北:儒林圖書有限公司。
    羅聖雅(2006)。台灣地區上市公司信用風險衡量與績效評估。銘傳大學
    經濟學系碩士在職專班碩士論文。
    蘇敏賢、林修葳,(2006)。Merton模型預測違約之使用限制探索。金融
    風險管理季刊,第二捲,第三期,第65-87頁。
    二、英文部分
    Altman, E. I. (1968). “Financial Ratios, Discriminant
    Analysis and the Prediction of Corporate Bankruptcy.”
    Journal of Finance, 23(4), 589-609.
    Altman, E. I., Haldeman, R.G., and Narayanan, P.
    (1977). “Zeta Analysis—A New Model to Indentify
    Bankruptcy Risk of Corporations.” Journal of Banking
    and Finance, Vol.1, 29-54.
    Atiya, A. F. (2001). “Bankruptcy Prediction for Credit Risk
    Using Neural Networks: Asurvey and New Results.” IEEE
    Transactions on Neural Networks, 12(4),
    929-935.
    Beaver, W. H. (1966). “Financial Ratios as Predictors of
    Failure.” Journal of Accounting Research, 4, 71-111.
    Black, F. and Scholes M. (1973). “The Pricing of Options
    and Corporate Liabilities.” Journal of Political
    Economy, 81(3), 637-654.
    Fitzpartrick, P. J. (1932).“A Comparison of Ratios of
    Successful Industrial Enterprises with Those of Failed
    Firms.” Certified Public Accountant, 3: 656-662.
    Leshno, M. and Spector Y. (1996). “Neural Network
    Prediction Analysis: The Bankruptcy Case.”
    Neurocomputing, 10(2), 125-147.
    Merton, R. C. (1973). “Theory of Rational Option Pricing.”
    Bell Journal of Economics and Management Science 4,
    141-183.
    Merton, R. C. (1974). “On the Pricing of Corporate Debt:
    The Risk Structure of Interest Rates.” Journal of
    Finance, 29(2), 449-470.
    Ohlson, J. A. (1980). “Financial Ratios and the
    Probabilistic Prediction of Bankruptcy.” Journal of
    Accounting Research, 18(1), 109-131.
    Zmijewski, M. E. (1984). “Methodological Issues Related to
    the Estimation of Financial Distress Prediction
    Models.” Journal of Accounting Research, 22,
    59-82.
    Description: 碩士
    國立政治大學
    金融學系
    105352016
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352016
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MB.008.2018.F06
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback