政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/112618
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52611521      在线人数 : 868
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/112618


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/112618


    题名: 基於LASSO和FORWARD的節點選取方法比較
    A comparison between two knot selection methods based on LASSO and FORWARD selection
    作者: 孟耿德
    Meng, Geng De
    贡献者: 黃子銘
    Huang, Tzee Ming
    孟耿德
    Meng, Geng De
    关键词: 變數選取
    最小壓縮法
    KNOT
    LASSO
    日期: 2017
    上传时间: 2017-09-13 14:12:10 (UTC+8)
    摘要: 在無母數迴歸問題中,如果迴歸函數以spline函數近似,而且使用等距節點,則節點選取可以視為一個變數選取的問題。TiBshirani(1996)提出最小絕對壓縮挑選運算(Least Absolute Shrinkage and Selection Operator; LASSO)能夠對變數縮減,本研究中將考慮使用LASSO和forward 兩種選取變數方法進行節點選取。根據本研究模擬結果,forward選取方法的挑選節點效果比較好。
    In nonparametric regression, if the regression function is approximated using a spline function with equally spaced knots ,then the problem of knot selection can Be considered as a variable selection problem. Tibshirani(1996) proposed Least Absolute Shrinkage and Selection Operator(LASSO), which can Be used for variable selection. In this thesis, two variable selection methods: LASSO and forward, are considered for knots selection. According to the simulation results in this thesis, the forward method is better for knot selection.
    參考文獻: 參考文獻

    [1]Charles J. Stone(1997)Polynomial Splines and their Tensor Products in Extended Linear Modeling;p1374-p1377
    [2]Denison, D., Mallick, B., and Smith, A. (1998). Automatic Bayesian curve fitting, J. R. Statist. Soc., B, 60, 333–350
    [3]EuBank, R.L. (1988). Smoothing Splines and Non-parametric Regression, Marcel Dekker, New Yorkand Base
    [4 ]Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal proBlems. Technometrics 12, 55-67.
    [5]I. J. SchoenBerg, On trigonometric spline interpolation, J. Math. Mech. 13(1964), 795-825
    [6]Michael R. OsBorne, Brett Presnell, and Berwin A. Turlach. Knot selection for regression splines via the LASSO. In Computing Science and Statistics. Dimen-sion Reduction, Computational Complexity and Information. Proceedings of the 30th Symposium on the Interface, pages 44–49, 1998
    [7]WahBa, G. (1990) Spline Models for OBservational Data.
    [8] R. TiBshirani. Regression shrinkage and selection via the LASSO. Journal of the RoyalStatistical Society (Series B), 58:267–288, 1996.
    [9 ] Schumaker, L. L. (1981) Spline functions, Wiley, New York.
    描述: 碩士
    國立政治大學
    統計學系
    104354029
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1043540291
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML2270检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈