English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51836064      Online Users : 384
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/111305
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111305


    Title: 非監督式學習下高風險行為青少年探究
    Unsupervised learning of adolescent risk-taking study
    Authors: 李承軒
    Contributors: 周珮婷
    李承軒
    Keywords: 非監督式學習
    聚合式階層分群法
    資料雲幾何樹
    風險行為
    Unsupervised learning
    Agglomerative hierarchical clustering
    Data cloud geometry tree
    Risk-taking
    Date: 2017
    Issue Date: 2017-07-24 11:59:12 (UTC+8)
    Abstract: 本研究主要以非監督式學習的演算法,以兩種分群演算法,交叉探討青少年族群的高風險行為特徵。兩種分群演算法中,第一種為資料雲幾何樹,它具有溫度與時間兩個維度構面,透過溫度的篩選以及時間軸的自動偵測,提高群聚間的差異,另一種為聚合式階層分群法,它屬於簡潔明瞭、快速實用的方法。在此將風險行為資料分成連續型與類別型兩部分同時進行分群,並以檢定的方式來驗證是否滿足群間差異大。從顯著變數個數的比較中發現,階層式分群法的表現較佳,推測其群間差異較大,而從一方面來看,從變異比的比較中發現,資料幾何雲樹在特殊群聚下變異比較大,也就是群間差異大,反而階層式分群則只在第一次分群時群聚間差異較大,最後,計算特殊群聚與非特殊群聚的差異,發現特殊群聚的風險值較高,推測為高風險青少年,並從兩演算法下所得的特殊群聚中挑出重複出現的觀測值,作為我們所要找的高風險青少年目標群,並針對目標群人口資料整理。
    The current study used the two clustering algorithms in unsupervised learning to explore adolescents’ risk-taking behaviors cross-culturally. The first algorithm was data cloud geometry tree, which considered two elements, temperature and time, in the algorithm. Through the filtering of temperature and the automatic detection of time axis, the differences between clusters were increased as temperature was lowered. The second algorithm was agglomerative hierarchical clustering, a simple and practical method. The risk-taking data were divided into two parts: numerical type and categorical type. Hypothesis tests were conducted to verify whether the differences between groups were significant. The results showed that the hierarchical clustering method performed better. In addition, the findings showed that the group differences in the special cluster were larger when using the data cloud geometry tree. Finally, the difference between the special group and the non-special group was calculated, and the risk value of the special group was high, which identified the potentially high-risk adolescents. The special clusters obtained from the two algorithms were compared to get the repeated subjects, which served as our target. Also, demographic data of the target were discussed.
    Reference: Abbas, O. A. (2008). Comparisons Between Data Clustering Algorithms. Int. Arab J. Inf. Technol., 5(3), 320-325.
    Ahmad, A., & Dey, L. (2007). A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set. Pattern Recognition Letters, 28(1), 110-118.
    Fushing, H., & McAssey, M. P. (2010). Time, temperature, and data cloud geometry. Physical Review E, 82(6), 061110.
    Fushing, H., Wang, H., VanderWaal, K., McCowan, B., & Koehl, P. (2013). Multi-scale clustering by building a robust and self correcting ultrametric topology on data points. PLoS ONE, 8(2), e56259.
    Hamming, R. W. (1950), Error Detecting and Error Correcting Codes. Bell System Technical Journal, 29: 147–160. doi: 10.1002/j.1538-7305.1950.tb00463.x
    Jia, H., Cheung, Y.-m., & Liu, J. (2016). A new distance metric for unsupervised learning of categorical data. IEEE transactions on neural networks and learning systems, 27(5), 1065-1079.
    Murtagh, F., & Legendre, P. (2011). Ward`s hierarchical clustering method: clustering criterion and agglomerative algorithm. arXiv preprint arXiv:1111.6285.
    Description: 碩士
    國立政治大學
    統計學系
    104354017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104354017
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    401701.pdf5922KbAdobe PDF2389View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback