政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/111304
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51786174      在线人数 : 336
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/111304


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/111304


    题名: 機器學習分類方法DCG 與其他方法比較(以紅酒為例)
    A supervised learning study of comparison between DCG tree and other machine learning methods in a wine quality dataset
    作者: 楊俊隆
    Yang, Jiun Lung
    贡献者: 周珮婷
    Chou, Pei Ting
    楊俊隆
    Yang, Jiun Lung
    关键词: 監督式學習
    非監督式學習
    加權資料雲幾何樹
    Supervised learning
    Unsupervised learning
    WDCG
    日期: 2017
    上传时间: 2017-07-24 11:58:59 (UTC+8)
    摘要: 隨著大數據時代來臨,機器學習方法已然成為熱門學習的主題,主要分為監督式學習與非監督式學習,亦即分類與分群。本研究以羅吉斯迴歸配適結果加權距離矩陣,以資料雲幾何樹分群法為主,在含有類別變數的紅酒資料中,透過先分群再分類的方式,判斷是否可以得到更佳的預測結果。並比較監督式學習下各種機器學習方法預測表現,及非監督式學習下後再透過分類器方法的預測表現。在內容的排序上,首先介紹常見的分類與分群演算方法,並分析其優缺點與假設限制,接著將介紹資料雲幾何樹演算法,並詳述執行步驟。最後再引入加權資料雲幾何樹演算法,將權重的觀點應用在資料雲幾何樹演算法中,透過紅酒資料,比較各種分類與分群方法的預測準確率。
    Machine learning has become a popular topic since the coming of big data era. Machine learning algorithms are often categorized as being supervised or unsupervised, namely classification or clustering methods. In this study, first, we introduced the advantages, disadvantages, and limits of traditional classification and clustering algorithms. Next, we introduced DCG-tree and WDCG algorithms. We extended the idea of WDCG to the cases with label size=3. The distance matrix was modified by the fitted results of logistic regression. Lastly, by using a real wine dataset, we then compared the performance of WDCG with the performance of traditional classification methodologies. The study showed that using unsupervised learning algorithm with logistic regression as a classifier performs better than using only the traditional classification methods.
    參考文獻: Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of machine learning research, 1(Dec), 113-141.
    Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). ACM.
    Chakraborty, S. (2005). Bayesian machine learning. University of Florida.
    Chou, E. P., Hsieh, F., & Capitanio, J. (2013). Computed Data-Geometry Based Supervised and Semi-supervised Learning in High Dimensional Data. In Machine Learning and Applications (ICMLA), 2013 12th International Conference on (Vol. 1, pp. 277-282). IEEE.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4), 547-553.
    Dietterich, T. G. (1997). Machine-learning research. AI magazine, 18(4), 97.
    Filzmoser, P., Baumgartner, R., & Moser, E. (1999). A hierarchical clustering method for analyzing functional MR images. Magnetic resonance imaging, 17(6), 817-826.
    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of human genetics, 7(2), 179-188.
    Fushing, H., & McAssey, M. P. (2010). Time, temperature, and data cloud geometry. Physical Review E, 82(6), 061110.
    Fushing, H., Wang, H., VanderWaal, K., McCowan, B., & Koehl, P. (2013). Multi-scale clustering by building a robust and self correcting ultrametric topology on data points. PloS one, 8(2), e56259.
    Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
    Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. In Advances in neural information processing systems (pp. 507-513).
    Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
    Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26(3), 159-190.
    Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The journal of educational research, 96(1), 3-14.
    Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 45(1), S199-S209.
    Sharan, R. V., & Moir, T. J. (2014). Comparison of multiclass SVM classification techniques in an audio surveillance application under mismatched conditions. In Digital Signal Processing (DSP), 2014 19th International Conference on (pp. 83-88). IEEE.
    描述: 碩士
    國立政治大學
    統計學系
    102354015
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0102354015
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    401501.pdf857KbAdobe PDF2912检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈