English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52190242      Online Users : 679
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/110786
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110786


    Title: 簡單順序假設波松母數較強檢力檢定研究- 兩兩母均數比例
    More powerful tests for simple order Hypotheses about Poisson parameters --- the ratios of the parameters
    Authors: 潘彥丞
    Pan, Yen Chen
    Contributors: 劉惠美
    Liu, Hui Mei
    潘彥丞
    Pan, Yen Chen
    Keywords: 波松分布
    信賴區間p-value
    較強檢定力檢定
    Poisson distribution
    Confidence interval p-value
    More powerful test
    Date: 2017
    Issue Date: 2017-07-11 11:26:30 (UTC+8)
    Abstract: Roger L. Berger (1996) “More Powerful Tests from Confidence Interval p Values”在檢定兩獨立二項分布時,先建立非條件檢定z-test,找到非條件檢定之p-value,以p_z表示,接著引用Roger L. Berger and Dennis D. Boos (1994) “P Values Maximized Over a Confidence Set for the Nuisance Parameter”將最大化取值的界限限制在信賴區間內,找到的信賴區間之p-value (Confidence interval p-value),以p_c表示,欲針對非條件檢定建構較強檢定力之檢定,亦即檢定尺度依然小於α 並且檢定力較強之檢定,結果發現以p_z≤α找到之拒絕域包含於用p_c≤α找到之拒絕域,等同於用p_c找到之拒絕域其檢定力至少較p_z為高,亦即Berger (1996)引用Berger and Boos (1994)的方法,成功建構較非條件檢定還要強之檢定。
    而本文將引用Berger (1996)的方法將兩獨立波松分布進行套用,希望檢定兩波松分布之母均數比例,應用Hon Keung Tony Ng and Man-Lai Tang (2005) ” Testing the equality of two Poisson means using the rate ratio”建立出非條件檢定z-test,並且根據Berger and Boos (1994)的方法,利用Robert M. Price and Douglas G. Bonett (2000) “Estimating the ratio of two Poisson rates”找到之信賴區間,建立信賴區間之p-value,得出較非條件檢定還要強之檢定。
    我們發現在進行實驗設計時,兩獨立波松分布之樣本數比例是很重要的變數,它會影響我們找到之較強檢定力之檢定的表現,在廣泛的領域應用上,將此變數控制為理想的值勢必可以達到提升實驗效率並且降低研究之成本。
    In the problem of comparing two independent binomial populations , Roger L. Berger (1996) “More Powerful Tests from Confidence Interval p Values.” showed that the test based on the confidence interval p-value of Roger L. Berger and Dennis D. Boos (1994) “P Values Maximized Over a Confidence Set for the Nuisance Parameter.” often is uniformly more powerful than the standard unconditional test.
    In this article we consider the problem of comparing two independent poisson population rates ratio. Based on the Hon Keung Tony Ng and Man-Lai Tang (2005) ” Testing the equality of two Poisson means using the rate ratio” , we construct the standard unconditional z-test . Similarly, based on the Berger and Boos (1994),we use the confidence interval from Robert M. Price and Douglas G. Bonett (2000) “Estimating the ratio of two Poisson rates” to construct the confidence p-value. We show the confidence p-value is more powerful than the standard unconditional z-test.
    The sample ratio of two independent poisson is an important variable, it controls the influence of the more powerful test. In a wide range of applications , the control of this variable to the ideal value is bound to achieve improved experimental efficiency and reduce the cost of the experiment.
    Reference: 1. Clopper, C. J., and Pearson, E. S. (1934). “The use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial”. Biometrika, 26, 404-413.
    2. Haber,M. (1986). “An Exact Unconditional Test for the 2×2 Comparative Trial”. Psychological Bullein, 99, 129-132
    3. Hon Keung Tony Ng and Man-Lai Tang (2005). ” Testing the equality of two Poisson means using the rate ratio”. Statistics in Medicine, 24, 955-965.
    4. K.Krishnamoorthy and Jessica Thomson (2002). “A more powerful test for comparing two Poisson means”. Journal of Statistical Planning and Inference, 119, 23-35.
    5. Lehmann, EL (1952), “Testing multiparameter hypotheses”. The Annals of Mathematical Statistics, 541-552.
    6. Roger L. Berger and Dennis D. Boos (1994). “P Values Maximized Over a Confidence Set for the Nuisance Parameter”. Journal of the American Statistical Association, 89, 1012-1016.
    7. Roger L. Berger (1996). “More Powerful Tests from Confidence Interval p Values”. The American Statistician, 50, 314-318
    8. Robert M. Price and Douglas G. Bonett (2000). “Estimating the ratio of two Poisson rates”. Computational Statistics & Data Analysis, 34,345-356.
    9. Suissa, S., and Shuster,J. J. (1985). “Exact Unconditional Sample Sizes for the 2×2 Binomial Trial”. Journal of the Royal Statistical Society,Ser. A,148,317-327.
    10. Thode HC. (1997). “Power and sample size requirements for tests of differences between two Poisson rates”. The Statisticain, 46, 227-230.
    11. Data.gov,美國交通違規事件,上網日期2017年6月15日,檢自:https://catalog.data.gov/dataset/traffic-violations-56dda
    Description: 碩士
    國立政治大學
    統計學系
    104354016
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1043540161
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    016101.pdf1028KbAdobe PDF2270View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback