Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/110779
|
Title: | 複迴歸係數排列檢定方法探討 Methods for testing significance of partial regression coefficients in regression model |
Authors: | 闕靖元 Chueh, Ching Yuan |
Contributors: | 江振東 Chiang, Jeng Tung 闕靖元 Chueh, Ching Yuan |
Keywords: | 排列檢定 複迴歸模型 樞紐統計量 蒙地卡羅模擬 型一誤差 檢定力 Permutation test Multiple regression model Pivotal quantity Monte Carlo simulation Type I error Power |
Date: | 2017 |
Issue Date: | 2017-07-11 11:25:12 (UTC+8) |
Abstract: | 在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。 在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。 In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method. Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed. |
Reference: | 1.Anderson, M. J. (2001). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58, 626-639. 2.Anderson, M. J., and Legendre, P. (1999). An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation, 62, 271-303. 3.Anderson, M. J., and Robinson, J. (2001). Permutation tests for linear models. Australian and New Zealand Journal of Statistics, 43, 75-88. 4.Freedman, D., and Lane, D. (1983). A nonstochastic interpretation of reported significance levels. Journal of Business and Economic Statistics, 1, 292-298. 5.Kennedy, P. E. (1995). Randomization tests in econometrics. Journal of Business and Economic Statistics, 13, 85-94. 6.Kennedy, P. E., and Cade, B. S. (1996). Randomization tests for multiple regression. Communications in Statistics – Simulation and Computation, 25, 923-936. 7.Levin, B., and Robbins, H. (1983). Urn models for regression analysis, with applications to employment discrimination studies. Law and Contemporary Problems, 46, 247-267. 8.Manly, B. F. J. (1991). Randomization, Bootstrap and Monte Carlo methods in biology (First Edition). London: Chapman and Hall. 9.Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo methods in biology (Second Edition). London: Chapman and Hall. 10.Manly, B. F. J. (2006). Randomization, Bootstrap and Monte Carlo methods in biology (Third Edition). London: Chapman and Hall. 11.Oja, H. (1987). On permutation tests in multiple regression and analysis of covariance problems. Australian Journal of Statistics, 29, 91-100. 12.O’Gorman, T. W. (2005). The performance of randomization tests that use permutations of independent variables. Communication in Statistics – Simulation and Computation, 34, 895-908. 13.ter Braak, C. J. F. (1992). Permutation versus bootstrap significance tests in multiple regression and ANOVA. Bootstrapping and Related Techniques (K.-H. Jockel, G. Rothe and W. Sendler, Eds.), Berlin: Springer Verlag, 79-86. 14.Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397. |
Description: | 碩士 國立政治大學 統計學系 104354007 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0104354007 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
400701.pdf | 1067Kb | Adobe PDF2 | 170 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|