English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51811202      Online Users : 257
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/110779
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110779


    Title: 複迴歸係數排列檢定方法探討
    Methods for testing significance of partial regression coefficients in regression model
    Authors: 闕靖元
    Chueh, Ching Yuan
    Contributors: 江振東
    Chiang, Jeng Tung
    闕靖元
    Chueh, Ching Yuan
    Keywords: 排列檢定
    複迴歸模型
    樞紐統計量
    蒙地卡羅模擬
    型一誤差
    檢定力
    Permutation test
    Multiple regression model
    Pivotal quantity
    Monte Carlo simulation
    Type I error
    Power
    Date: 2017
    Issue Date: 2017-07-11 11:25:12 (UTC+8)
    Abstract: 在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。
    在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。
    In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method.
    Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed.
    Reference: 1.Anderson, M. J. (2001). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58, 626-639.
    2.Anderson, M. J., and Legendre, P. (1999). An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation, 62, 271-303.
    3.Anderson, M. J., and Robinson, J. (2001). Permutation tests for linear models. Australian and New Zealand Journal of Statistics, 43, 75-88.
    4.Freedman, D., and Lane, D. (1983). A nonstochastic interpretation of reported significance levels. Journal of Business and Economic Statistics, 1, 292-298.
    5.Kennedy, P. E. (1995). Randomization tests in econometrics. Journal of Business and Economic Statistics, 13, 85-94.
    6.Kennedy, P. E., and Cade, B. S. (1996). Randomization tests for multiple regression. Communications in Statistics – Simulation and Computation, 25, 923-936.
    7.Levin, B., and Robbins, H. (1983). Urn models for regression analysis, with applications to employment discrimination studies. Law and Contemporary Problems, 46, 247-267.
    8.Manly, B. F. J. (1991). Randomization, Bootstrap and Monte Carlo methods in biology (First Edition). London: Chapman and Hall.
    9.Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo methods in biology (Second Edition). London: Chapman and Hall.
    10.Manly, B. F. J. (2006). Randomization, Bootstrap and Monte Carlo methods in biology (Third Edition). London: Chapman and Hall.
    11.Oja, H. (1987). On permutation tests in multiple regression and analysis of covariance problems. Australian Journal of Statistics, 29, 91-100.
    12.O’Gorman, T. W. (2005). The performance of randomization tests that use permutations of independent variables. Communication in Statistics – Simulation and Computation, 34, 895-908.
    13.ter Braak, C. J. F. (1992). Permutation versus bootstrap significance tests in multiple regression and ANOVA. Bootstrapping and Related Techniques (K.-H. Jockel, G. Rothe and W. Sendler, Eds.), Berlin: Springer Verlag, 79-86.
    14.Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397.
    Description: 碩士
    國立政治大學
    統計學系
    104354007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104354007
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    400701.pdf1067KbAdobe PDF2170View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback