政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/103978
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52618163      線上人數 : 776
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/103978
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/103978


    題名: 運用貝氏方法估計方向距離函數─考慮環境變數、單調性與曲度限制下之效率分析
    A Bayesian Approach to Imposing Monotonicity and Curvature on Directional Distance Function with Environmental Variables
    作者: 林嘉偉
    Lin, Chia-Wei
    貢獻者: 黃台心
    Huang, Tai-Hsin
    林嘉偉
    Lin, Chia-Wei
    關鍵詞: 貝氏方法
    方向距離函數
    非意欲產出
    單調性與曲度限制
    環境變數
    效率分數
    技術進步率
    日期: 2016
    上傳時間: 2016-11-14 16:09:52 (UTC+8)
    摘要: 本文以貝氏方法估計方向距離函數,加入單調性與曲度限制,同時考慮環境變數於模型中。為了凸顯考慮非意欲產出方向距離函數的優點,本文同時估計產出面射線距離函數,並與方向距離函數模型比較。實證分析資料為1970至2010年間各國總體經濟變數,分別在有無加入限制條件與環境變數的狀況下,估計兩種距離函數,從無效率值、效率分數與技術進步率等角度分析彼此間的差異。發現射線距離函數模型由於忽略非意欲產出,傾向高估生產單位的技術效率。另一方面,其係數估計值容易違反射線距離函數的先天性質,較不具參考性。而方向距離函數模型當中,有無加入限制條件與有無考慮環境變數的模型結果各不相同,其中同時加入限制條件與環境變數的模型結果最為合理。
    參考文獻: Assaf, A.G., R. Matousek and E.G. Tsionas, (2013). Turkish bank efficiency: Bayesian estimation with undesirable outputs, Journal of Banking and Finance, 37, 506-517.

    Atkinson, S.E. and J.H. Dorfman, (2005). Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution, Journal of Econometrics, 126, 445-468.

    Battese, G.E. and T.J. Coelli, (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data, Empirical Economics, 20, 325-332.

    Breheny, P., (Retrieved September 26 2016). MCMC methods: Gibbs and Metropolis, from: http://web.as.uky.edu/statistics/users/pbreheny/701/S13/notes/2-28.pdf

    Bokusheva, R. and S.C. Kumbhakar, (2014). A distance function model with good and bad outputs, from: http://ageconsearch.umn.edu/bitstream/182765/2/Bokusheva-Distance_function_model_with_good_and_bad_outputs-258_a.pdf

    Boyd, G.A., G. Tolley and J. Pang, (2002). Plant level productivity, efficiency, and environmental performance of the container glass industry, Environmental and Resource Economics, 23, 29-43.

    Broeck, J. van den, G. Koop, J. Osiewalski and M.F.J. Steel, (1994). Stochastic frontier models: a Bayesian perspective, Journal of Econometrics, 61, 273-303.

    Chambers, R.G., (2002). Exact nonradial input, output, and productivity measurement, Economic Theory, 20, 751-765.

    Chung, Y.H., R. Färe and S. Grosskopf, (1997). Productivity and undesirable outputs: a directional distance function approach, Journal of Environmental Management, 51, 229-240.

    Cowles, M.K. and B.P. Carlin, (Retrieved September 26 2016). Markov chain Monte Carlo convergence diagnostics: a comparative review, from: http://www.public.iastate.edu/~alicia/stat544/rr94-008.pdf

    Färe, R. and S. Grosskopf, (2003). New directions: efficiency and productivity, US: Springer.

    Färe, R., S. Grosskopf, D. Noh and W. Weber, (2005). Characteristics of a polluting technology, Journal of Econometrics, 126, 469-492.

    Feng, G. and A. Serletis, (2010). A primal Divisia technical change index based on the output distance function, Journal of Econometrics, 159, 320-330.

    Feng, G. and A. Serletis, (2014). Undesirable outputs and a primal Divisia productivity index based on the directional output distance function, Journal of Econometrics, 183, 135-146.

    Feng, G. and X.H. Zhang, (2012). Productivity and efficiency at large and community banks in the US: a Bayesian true random effects stochastic distance frontier analysis, Journal of Banking and Finance, 36, 1883-1895.

    Fernández, C., G.M. Koop and M. Steel, (2002). Multiple output production with undesirable outputs: an application to nitrogen surplus in agriculture, Journal of the American Statistical Association, 97, 432-442.

    Fernández, C., J. Osiewalski and M.F.J. Steel, (1997). On the use of panel data in stochastic frontier models with improper priors, Journal of Econometrics, 79,169-193.

    Flegal, J.M., (2008). Monte Carlo standard errors for Markov chain Monte Carlo, from: http://www.faculty.ucr.edu/~jflegal/Final_Thesis_twosided.pdf

    Griffin, J.E. and M.F.J. Steel, (2007). Bayesian stochastic frontier analysis using WinBUGS, Journal of Productivity Analysis, 27, 163-176.

    Griffin, J. E. and M.F.J. Steel, (2008). Flexible mixture modeling of stochastic frontiers, Journal of Productivity Analysis, 29, 33-50.

    Griffiths, W.E., C.J. O’Donnell and A.T. Cruz, (2000). Imposing regularity conditions on a system of cost and factor share equations, The Australian Journal of Agricultural and Resource Economics, 44, 107-127.

    Huang, C.J. and J.-T. Liu, (1994). Estimation of a non-neutral stochastic frontier production function, Journal of Productivity Analysis, 5, 171-180.

    Huang, H.C., (2004). Estimation of technical inefficiencies with heterogeneous technologies, Journal of Productivity Analysis, 21, 277-296.

    Huang, T.-H., (2005). A study on the productivities of IT capital and computer labor: firm-level evidence from Taiwan’s banking industry, Journal of Productivity Analysis, 24, 241-257.

    Kleit, A.N. and D. Terrell, (2001). Measuring potential efficiency gains from deregulation electricity generation: a Bayesian approach, Review of Economics and Statistics, 83, 523-530.

    Koop, G., J. Osiewalski and M.F.J. Steel, (1994b). Hospital efficiency analysis with individual effects: a Bayesian approach, Center for Economic Research discussion paper, 9447.

    Koop, G., J. Osiewalski and M.F.J. Steel, (1997). Bayesian efficiency analysis through individual effects: hospital cost frontiers, Journal of Econometrics, 76, 77-105.

    Kurkalova, L. A. and A. Carriquiry, (2003). Input- and output-oriented technical efficiency of Ukrainian collective farms, 1989-1992: Bayesian analysis of a stochastic production frontier model, Journal of Productivity Analysis, 20, 191-211.

    Lam, P., (Retrieved September 26 2016). MCMC methods: Gibbs sampling and the Metropolis-Hastings algorithm, from: http://pareto.uab.es/mcreel/IDEA2015/MCMC/mcmc.pdf

    Lee, J.-D., J.-B. Park and T.-Y. Kim, (2002). Estimation of the shadow prices of pollutants with production/environment inefficiency taken into account: a nonparametric directional distance function approach, Journal of Environmental Management, 63, 365-375.

    Lin, E.T.J. and L.W. Lan, (2010). Measuring firm-specific efficiencies with Bayesian stochastic distance function, 2010 International Conference on Asia Pacific Business Innovation and Technology Management.

    Morey, E.R., (1986). An introduction to checking, testing, and imposing curvature properties: the true function and the estimated function, Canadian Journal of Economics, 19, 207-235.

    O’Donnell, C.J. and T.J. Coelli, (2005). A Bayesian approach to imposing curvature on distance functions, Journal of Econometrics, 126, 493-523.

    Orea, L., (2002). Parametric decomposition of a generalized Malmquist productivity index, Journal of Productivity Analysis, 18, 5-22.

    Osiewalski, J. and M.F.J. Steel, (1998). Numerical tools for the Bayesian analysis of stochastic frontier models, Journal of Productivity Analysis, 10, 103-117.

    Sinharay, S., (2003). Assessing convergence of the Marlov chain Monte Carlo algorithms: a review, from: http://www.ets.org/Media/Research/pdf/RR-03-07-Sinharay.pdf

    Terrell, D., (1996). Incorporating monotonicity and concavity conditions in flexible functional forms, Journal of Applied Econometrics, 11, 179-194.

    Zhang, X., (1999). A Monte Carlo study on the finite sample properties of the Gibbs sampling method for a stochastic frontier model, Journal of Productivity Analysis, 14, 71-83.
    描述: 碩士
    國立政治大學
    金融學系
    103352016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0103352016
    資料類型: thesis
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    201601.pdf4676KbAdobe PDF2387檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋