Reference: | 1. Chang, D.S. and Tsai, D.C. (1979) : A Modified Approach to Ridge Estimation. Proceedings of the conference on Recent Developments in Statistical Methods and Applications, 53~69. 2. Gibbons, D. G. (1981): A Simulation Study of Some Ridge Estimtors. JASA, 76, 131~139. 3. Golub, G. H. and Reinsch, C. ( 1970 ) : Singular Value Decomposition and Least Squares Solution. Numer. Math., 14, 403~420. 4. Gunst, R. F. (1979): An Approach to the Programming of Biased Regression Algorithms. Commun. Statist. B8, 151~159. 5. Hocking, R.R., Speed, F. M. and Lynn, M. J. ( 1976) : A Class of Biased Estimators in Linear Regression. Technometrics, 18, 425~437. 6. Hoerl, A. E. and Kennard, R.W. ( 1970a ) : Ridge Regression : Biased Estimation for Nonorthogonal Problems. Technometrics , 12, 55~67. 7. Hoerl, A. E. and Kennard, R.W. ( 1970b ) : Ridge Regression : Applications to Nonorthogonal Problems. Technometrics, 12, 69~82. 8. Hoerl, A. E., Kennard, R.W. and Baldwin, K. F. (1975) : Ridge Regression : Some Simulations. Commun. Statist. B4, 105~123. 9. Hoerl, A. E. and Kennard, R. W. (1976) :Ridge Regression : Interative Estimation of the Biasing Parameter. Commun. Statist. A5, 77~78. 10. Kunth, D. E. ( 1969) : The Art of Computer Programming. Volume 2, p. 104. Addison-Wesley. 11. Law, A. M. and Kelton, W. D. ( 1982 ) : Simulation Modeling and Analysis. McGraw-Hill, Inc. 222~228. 12. Leon, S. J. ( 1980 ) : Linear Algebra with Applications. Macmillan Publishing Co., Inc. 13. Marquardt, D. W. ( 1970 ) : Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12, 591~612. 14. McDonald, G. C. and Galarneau, D. I . ( 1975 ) : A Monte Carlo evaluation of Some Ridge Type estimators. JASA, 70, 407~416. 15. Nordberg, L. (1982) : A Procedure for Determination of A Good Ridge Parameter in Linear Regression. Commun. Statist. B11, 285~309. 16.謝文達 ( 1982 ):脊廻歸中一些估計方法的模擬研究,淡大數學所碩士論文。 |