政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/100452
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52291722      線上人數 : 479
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/100452
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/100452


    題名: 單因子模型下信用損失分配尾端機率估計與合成型擔保債務憑證評價
    Estimating Tail Probability of Credit Loss Distribution and Pricing CDOs with One Factor Copula Model
    作者: 紀宛汝
    Chi, Wan Ju
    貢獻者: 劉惠美
    Liu, Hui Mei
    紀宛汝
    Chi, Wan Ju
    關鍵詞: 關聯結構
    重點抽樣方法
    合成型擔保債務憑證
    封閉偏斜常態分配
    Copula model
    Importance sampling method
    Collateralized debt obligation
    Closed skew normal distribution
    日期: 2014
    上傳時間: 2016-08-22 10:42:28 (UTC+8)
    摘要: 本文利用Bassamboo et al. (2008)提出有極值相依的t關聯結構模型,結合Chiang et al. (2007)所提出之重點抽樣方法,延伸出兩種估計信用損失分配尾端損失機率之重點抽樣方法,結果顯示模擬速度迅速,且其變異數縮減表現良好。另外,在評價合成型擔保債務憑證方面,由於在Kalemanova (2007)中,常態逆轉高斯模型對於擔保債務憑證之高級等級有良好的估計,本文提出利用封閉偏斜常態分配與常態逆轉高斯分配之混合分配對合成型擔保債務憑證做評價,其評價結果表現優異,較常態逆轉高斯模型表現更好。
    參考文獻: 1. Andersen, L., and J. Sidenius. (2005). Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings. Journal of Credit Risk, 1, 29-70.
    2. Bassamboo, A, S. Juneja, and A. Zeevi (2008). Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation. Operations Research, 56, 593-606.
    3. Chiang, M. H, M. L. Yueh, and M.H. Hsieh (2007). An Efficient Algorithm for Basket Default Swap Valuation. Journal of Derivatives 15, 8-19.
    4. Capriotti, L. (2008). Least-Squares Importance Sampling for Monte Carlo Security Pricing. Quantitative Finance 8, 485-497.
    5. Chan, J C.C and D P. Kroese (2010). Efficient Estimation of Large Portfolio Loss Probabilities in T-Copula Models. European Journal of Operational Research 205, 361-367.
    6. Chen, Z. , Q. Bao, S. Li and J. Chen (2012). Pricing CDO Tranches with Stochastic Correlation and Random Factor Loadings in a Mixture Copula Model . Applied Mathematics and Computation 219, 2909-2916.
    7. Glasserman, P. (2004). Tail Approximations for Portfolio Credit Risk. The Journal of Derivatives 12, 24-42.
    8. Glasserman, P. and J. Li (2005). Importance Sampling for Portfolio Risk. Management Science 51, 1643-1656.
    9. Grundke, P. (2009). Importance Sampling for Integrated Market and Credit Portfolio Models. European Journal of Operational Research 194, 206-226.
    10. Hull J. and A. White (winter 2004). Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation. The Journal of Derivatives, 8-23.
    11. Kalemanove A., B. Schmid, and R. Werner (spring 2007). The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing. The Journal of Derivatives, 80-93.
    12.Li, D. (2000) On Default Correlation: A Copula Function Approach. Journal of Fixed Income, 9, 43-54.
    13. Lüscher A. (December 2005). Synthetic CDO Pricing Using the Double Normal Inverse Gaussian Copula with Stochastic Factor Loadings. Master Thesis, Zürich University of Mathematics.
    14. Yang, R. , X. Qin and T. Chen (2009). CDO Pricing Using Single Factor M_(G-NIG) Copula Model with Stochastic Correlation and Random Loading. Journal of Mathematical Analysis and Applications 350, 73-80.
    15. Zheng, H. (2006). Efficient Hybrid Methods for Portfolio Credit Derivatives. Quantitative Finance 6, 349-357.
    描述: 博士
    國立政治大學
    統計學系
    94354502
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0094354502
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2315檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋