English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50938621      Online Users : 997
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/81267
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81267


    Title: Mathematical modeling and Bayesian estimation for error-prone retail shelf audits
    Authors: 莊皓鈞
    Chuang, Howard Hao-Chun
    Contributors: 資管系
    Keywords: Retail operations;Audit services;Inspection error;Risk aversion;Bayesian inference
    Date: 2015-10
    Issue Date: 2016-02-15 17:40:48 (UTC+8)
    Abstract: Prevalent execution errors such as out-of-stock, inventory record inaccuracy, and product misplacement jeopardize retail performance by causing low on-shelf availability, which discourages not only retailers who have lost sales but also manufacturers who have worked hard to deliver goods into retail stores. Thus, external service companies are hired by manufacturers to conduct manual inspection regularly. Motivated by the practical need of shelf audit service providers, we use a general cost structure to develop a decision support model for periodic inspection. Some qualitative insights about the intricate relationships among inspection efficacy, cost factors, failure rate of shelf inventory integrity, and optimal decisions are derived from analytics assuming risk-neutrality. From simulation experiments we also find that managers` risk preferences have non-trivial impacts on optimal decisions. Based on a total cost standpoint high-quality inspection is predominantly preferred regardless of the level of risk aversion. Finally, we propose a Bayesian statistical model and a Markov chain Monte Carlo approach to estimate model parameters such that managers can make empirically informed decisions. Our major contribution lies in developing a mathematical model that is practically applicable and proposing a Bayesian estimation approach to rationalize unobservable model parameters, which are influential to optimal decisions but often arbitrarily assumed by decision makers.
    Relation: Decision Support Systems,80,72-82
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.dss.2015.10.003
    DOI: 10.1016/j.dss.2015.10.003
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-s2.0-S0167923615001979-main.pdf974KbAdobe PDF2505View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback