政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81088
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114503/145531 (79%)
造訪人次 : 53431563      線上人數 : 1157
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/81088
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/81088


    題名: INTEGRATING EMD, CHAOS-BASED NEURAL NETWORK AND PSO FOR FINANCIAL TIME SERIES FORECASTING
    作者: 楊亨利;林漢洲
    Yang, Heng-Li;Lin, Han-Chou
    貢獻者: 資管所
    日期: 2015
    上傳時間: 2016-02-03 10:23:59 (UTC+8)
    摘要: In capital market research, stock or index prices are notoriously difficult to predict, because of their chaotic nature. For chaotic time series, the prediction techniques of PSR (Phase Space Reconstruction) methods, which are based on attractor reconstruction, can be employed to extract the information and characteristics hidden of the dynamic system from the time series. However, the existence of noise which may mask or mimic the deterministic structure of the time series, can lead to spurious results. In this work, EMD (Empirical Mode Decomposition) is specially developed for analyzing such nonlinear and non-stationary data. Thus, the major of this study is to integrate PSR, EMD and NN techniques optimized by particle swarm optimization to attempts to increase the accuracy for the prediction of stock index. The effectiveness of the methodology was verified by experiments comparing random walk model for Nasdaq Composite Index (NASDAQ). The results show that the proposed PSR-EMD-NNPSO model provides best prediction of stock index.
    關聯: ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH,49(1),
    資料類型: article
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    INTEGRATING_EMD.pdf628KbAdobe PDF2581檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋