政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/81088
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51200144      Online Users : 927
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/81088


    Title: INTEGRATING EMD, CHAOS-BASED NEURAL NETWORK AND PSO FOR FINANCIAL TIME SERIES FORECASTING
    Authors: 楊亨利;林漢洲
    Yang, Heng-Li;Lin, Han-Chou
    Contributors: 資管所
    Date: 2015
    Issue Date: 2016-02-03 10:23:59 (UTC+8)
    Abstract: In capital market research, stock or index prices are notoriously difficult to predict, because of their chaotic nature. For chaotic time series, the prediction techniques of PSR (Phase Space Reconstruction) methods, which are based on attractor reconstruction, can be employed to extract the information and characteristics hidden of the dynamic system from the time series. However, the existence of noise which may mask or mimic the deterministic structure of the time series, can lead to spurious results. In this work, EMD (Empirical Mode Decomposition) is specially developed for analyzing such nonlinear and non-stationary data. Thus, the major of this study is to integrate PSR, EMD and NN techniques optimized by particle swarm optimization to attempts to increase the accuracy for the prediction of stock index. The effectiveness of the methodology was verified by experiments comparing random walk model for Nasdaq Composite Index (NASDAQ). The results show that the proposed PSR-EMD-NNPSO model provides best prediction of stock index.
    Relation: ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH,49(1),
    Data Type: article
    Appears in Collections:[Department of MIS] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    INTEGRATING_EMD.pdf628KbAdobe PDF2549View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback