政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75489
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51577512      在线人数 : 923
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/75489


    题名: Classification methods of credit rating - A comparative analysis on SVM, MDA and RST
    作者: Hsu, C.F.;Hung, Hsufeng
    洪敘峰
    贡献者: 企管系
    关键词: Bank credit;Classification accuracy;Classification methods;Classification models;Comparative analysis;Credit ratings;Customer relationship management;Data sets;Decision making support system;Discriminate analysis;Empirical analysis;Feature selection;Risk measurement;SVM model;Two classification;Artificial intelligence;Classification (of information);Computer software;Public relations;Rating;Risk assessment;Software architecture;Support vector machines;Decision making
    日期: 2009-12
    上传时间: 2015-06-02 10:18:55 (UTC+8)
    摘要: The execution and the result of bank credit rating are closely linked with the bank`s investment and loan policies which form the initial risk measurement. It is an important and a shouldn`t ignored issue for bankers to set up a scientific, objective and accurate credit rating model in the field of customer relationship management. In this study, two classification methods, multiple discriminate analysis (MDA), CANDISC, and support vector machine (SVM) are applied to conduct a comparative empirical analysis using real world commercial loan data set. The result comes out that SVM model has reliable high classification accuracy under feature selection and therefore is suitable for bank credit rating. This study suggests the decision-making personnel to establish a decision-making support system to assist their judgment by using the classification model. ©2009 IEEE.
    關聯: Proceedings - 2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009,-
    数据类型: conference
    DOI 連結: http://dx.doi.org/10.1109/CISE.2009.5366068
    DOI: 10.1109/CISE.2009.5366068
    显示于类别:[風險管理與保險學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML21221检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈