政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/75489
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51578237      Online Users : 860
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/75489


    Title: Classification methods of credit rating - A comparative analysis on SVM, MDA and RST
    Authors: Hsu, C.F.;Hung, Hsufeng
    洪敘峰
    Contributors: 企管系
    Keywords: Bank credit;Classification accuracy;Classification methods;Classification models;Comparative analysis;Credit ratings;Customer relationship management;Data sets;Decision making support system;Discriminate analysis;Empirical analysis;Feature selection;Risk measurement;SVM model;Two classification;Artificial intelligence;Classification (of information);Computer software;Public relations;Rating;Risk assessment;Software architecture;Support vector machines;Decision making
    Date: 2009-12
    Issue Date: 2015-06-02 10:18:55 (UTC+8)
    Abstract: The execution and the result of bank credit rating are closely linked with the bank`s investment and loan policies which form the initial risk measurement. It is an important and a shouldn`t ignored issue for bankers to set up a scientific, objective and accurate credit rating model in the field of customer relationship management. In this study, two classification methods, multiple discriminate analysis (MDA), CANDISC, and support vector machine (SVM) are applied to conduct a comparative empirical analysis using real world commercial loan data set. The result comes out that SVM model has reliable high classification accuracy under feature selection and therefore is suitable for bank credit rating. This study suggests the decision-making personnel to establish a decision-making support system to assist their judgment by using the classification model. ©2009 IEEE.
    Relation: Proceedings - 2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009,-
    Data Type: conference
    DOI link: http://dx.doi.org/10.1109/CISE.2009.5366068
    DOI: 10.1109/CISE.2009.5366068
    Appears in Collections:[Department of Risk Management and Insurance] Proceedings

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21221View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback