Reference: | 中文參考文獻: 葉清江、羅良岡、齊德彰和黃彥儒(2006):整合分類迴歸樹與隨機森林於資訊揭露預測之研究:公司治理之考量。台灣作業研究學會理論與實務學術研討會。
英文參考文獻: Bhattacharjee, A., Richards, W.G.,Staunton, J.,Li, C., Monti, S.,Vasa, P.,Ladd, C. , Beheshti, J.,Bueno, R.,Gillette, M.,Loda, M.,Weber, G.,Mark, E.J.,Lander, E.S.,Wong, W., Johnson, B.E., Golub, T.R., Sugarbaker, D.J., Meyerson, M. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Aacd. Sci. USA, 98, 13790–13795.
Breiman, L.(2001) Random forests. Mach. Learn., 45, 5–32.
Chen, J.J.,Lee, T., Delonggchamp, R.R., Chen, T. and Tsao, C.A. (2007) Significance analysis of groups of genes in expression profiling studies. Bioinformatics, 23, 2104–2112.
Dinu, I., Potter, J.D., Mueller, T.,Liu, Qi., Adewale, A.J., Jhangri, G.S. , Einecke, G. , Famulski, K.S., Halloran, P. and Yasui, Y. (2007) Improving gene set analysis of microarray data by SAM-GS . BMC Bioinformatics ,8,242.
Efron, B. and Tibshirani, R. (2007)” On testing the significance of set s of genes”. Ann. Appl. Stat.,1, 107–129.
Farmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, P., Larsimont, D., Macgrogan, G., Bergh, J., Cameron, D., Goldstein, D., Duss, S., Nicoulaz, A.L., Brisken, C., Fiche, M., Delorenzi, M., Iggo, R. (2005) Identification of molecular apocrine breast tumours by microarray analysis . Oncogene, 24, 4660–4671.
Furey, T.S., Cristianini, N., Bednarski, D.W., Schummer, M. and Haussler, D. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data . Bioinformatics,16,906–914.
Fujita, N. et al.(2003) MTA3, a Mi-2/NuRD Complex Subunit, Regulates an Invasive Growth Pathway in Breast Cancer . Cell,113, 207–219.
Glazko, G.V. and Emmert-Streib, F. (2009) Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics , 25 , 18
Goeman, J.J. and Bühlmann, P.(2007) Analyzing gene expression data in terms of gene sets:methodological issues . Bioinformatics,16,906–914.
Goeman, J.J.,Sara A. van de Geer , Floor de Kort and Hans C. van Houwelingen (2004) A global test for groups of genes: testing association with a clinical outcome . Bioinformatics, 20, 93–99
Harris, M.A., Clark, J., Ireland, A.,Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C. (2004) The Gene Ontology (GO) database and informatics resource.Nucleic Acids Res., 32, D258–D261.
Kanehisa, M., Goto, S., Kawashima, S.,Okuno, Y. and Hattori, M. (2004) The KEGG resource for deciphering the genome . Nucleic Acids Res., 32, D277–D280.
Kong, S.W.,Pu1, W.T. and Park, P.J. (2006) A multivariate approach for integrating genomewide expression data and biological knowledge . Bioinformatics, 22, 2373–2380.
Liu, Q., Dinu, I., Adewale , A., Potter, J. and Yasui, Y..(2007) Comparative evaluation of gene-set analysis methods .BMC Bioinformatics,8:431.
Mansmann, U. and Meister, R. (2005) Testing differential gene expression in functional groups: Goeman’s global test versus an ANCOVA approach . Method. Inform. in Med., 44, 449–453.
Mehra, R.,Varambally, S., Ding, L., Shen R., Sabel, M.S., Ghosh, D., Chinnaiyan, A.M., Kleer, C.G. (2005) Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis .Cancer Res., 65, 11259–11264.
Menashe, I. , Maeder, D. , Garcia-Closas, M. , Figueroa, J.D., Bhattacharjee, S. Rotunno, M.,Kraft, P., Hunter, D.J., Chanock, S. J., Rosenberg, P.S., and Chatterjee, N. (2010) Pathway Analysis of Breast Cancer Genome-Wide Association Study Highlights Three Pathways and One Canonical Signaling Cascade .Cancer Research,DOI:10.1158/0008-5472.
Mootha,V.K., Lindgren,C.M., Eriksson,K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E.,Ridderstråle, M., Laurila, E.,Houstis, N.,Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B.,Lander, E.S., Hirschhorn, J.N.,Altshuler, D., Groop, L.C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.,34, 267–273.
Motoyama,A.B. and Hynes,N.E. (2003) BAD: a good therapeutic target?. Breast Cancer Res., 5 (1), 27–30.
Nam, D. and Kim, S.Y. (2008) Gene-set approach for expression pattern analysis . Brief.Bioinformatics, 9, 189–197
Ojala, M.and Garriga, G.C.(2010) Permutation Tests for Studying Classifier Performance . Journal of Machine Learning Research,11, 1833-1863
Pang, H.,Lin,A.,Holford,M.,Enerson, B.E.,Lu, B.,Lawton, M.P.,Floyd, E. and Zhao, H. (2006) Pathway analysis using random forests classification and regression. Bioinformatics, 22, 2028–2036.
Qi, Y.and Klein-Seetharaman, J.(2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction . Proteins, 63, 490–500.
Rajagopalan, D. and Agarwal, P.(2005) Inferring pathways from gene lists using a literature-derived network of biological relationships . Bioinformatics, 21, 788–793.
Schramm, G. , Surmann, E.M., Wiesberg, S., Oswald, M. , Reinelt, G., Eils, R. and Rainer, K.(2010) Analyzing the regulation of metabolic pathways in human breast cancer .BMC Medical Genomics,3:39.
Shao, W. and Brown, M. (2004) Advances in estrogen receptor biology: Prospects for improvements in targeted breast cancer therapy . Breast Cancer Res., 6, 39–52.
Sotiriou, C., Neo, S.Y. , McShane, L.M., Korn, E.L., Long, P.M., Jazaeri, A., Martiat, P., Fox, S.B., Harris,A.L. and Liu, E.T. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study . Proc. Natl Aacd. Sci. USA,100, 10393–10398.
Subramanian, A., Tamayo, P., Mootha, V.K. Mukherjee, S., Ebert, B.L., Gillette, M.A. Paulovich, A., Pomeroy, S.L., Golub, T.R. , Lander, E.S. and Mesirov, J.P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles . Proc Natl Acad Sci USA ,102,15545-15550.
Tian,L., Greenberg,S.A., Kong,S.W. Altschuler, J., Kohane, I.S. and Park, P. J. (2005) Discovering statistically significant pathways in expression profiling studies . Proc. Natl Acad. of Sci. USA, 102, 13544–13549.
Tsai, C.A., and Chen, J.J. (2009) Multivariate analysis of variance test for gene set analysis . Bioinformatics, 25, 897–903.
Tibshirani, R. (1996) Bias, variance, and prediction error for classification rules . Technical Report, Statistics Department, University of Toronto.
Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA, 98, 5116–5121
Wolpert, D. H. and Macready, W.G. (1999) An efficient method to estimate Bagging’s generalization error . Mach. Learn., 35, 41–55.
Wright, G. , Tan, B. , Rosenwald, A. , Hurt, E H. , Wiestner, A., and Staudt, L.M. (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma . Proc. Natl Acad. Sci. USA, 100,9991–9996. |