政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60442
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51039595      在线人数 : 911
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/60442


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60442


    题名: 隨機森林分類方法於基因組顯著性檢定上之應用
    Assessing the significance of a Gene Set
    作者: 卓達瑋
    贡献者: 薛慧敏
    蔡政安

    卓達瑋
    关键词: 外顯表型變數
    基因組分析
    隨機森林分類方法
    排列顯著值
    phenotypes
    gene set analysis
    Random Forests
    permutation-based p-value
    日期: 2010
    上传时间: 2013-09-05 15:12:54 (UTC+8)
    摘要: 在現今生物醫學領域中,一重要課題為透過基因實驗所獲得的量化資料,來研究與分析基因與外顯表型變數(phenotype)的相關性。已知多數已發展的方法皆屬於單基因分析法,無法適當的考慮基因之間的相關性。本研究主要針對基因組分析(gene set analysis)問題,提出統計檢定方法來驗證特定基因組的顯著性。為了能盡其所能的捕捉整體基因組與外顯表型變數的關係,我們結合了傳統的檢定方法與分類方法,提出以隨機森林分類方法(Random Forests)的測試組分類誤差值(test error)作為檢定統計量(test statistic),並以其排列顯著值(permutation-based p-value)來獲得統計結論。我們透過模擬研究將本研究方法和其他七種基因組分析方法做比較,可發現本方法在型一誤差率(type I error rate)和檢定力(power)上皆有優異表現。最後,我們運用本方法在數個實際基因資料組的分析上,並深入探討所獲得結果。
    Nowadays microarray data analysis has become an important issue in biomedical research. One major goal is to explore the relationship between gene expressions and some specific phenotypes. So far in literatures many developed methods are single gene-based methods, which use solely the information of individual genes and cannot appropriately take into account the relationship among genes. This research focuses on the gene set analysis, which carries out the statistical test for the significance of a set of genes to a phenotype. In order to capture the relationship between a gene set and the phenotype, we propose the use of performance of a complex classifier in the statistical test: The test error rate of a Random Forests classification is adopted as the test statistic, and the statistical conclusion is drawn according to its permutation-based p-value. We compare our test with other seven existing gene set analyses through simulation studies. It’s found that our method has leading performance in terms of having a controlled type I error rate and a high power. Finally, this method is applied in several real examples and brief discussions on the results are provided.
    參考文獻: 中文參考文獻:
    葉清江、羅良岡、齊德彰和黃彥儒(2006):整合分類迴歸樹與隨機森林於資訊揭露預測之研究:公司治理之考量。台灣作業研究學會理論與實務學術研討會。

    英文參考文獻:
    Bhattacharjee, A., Richards, W.G.,Staunton, J.,Li, C., Monti, S.,Vasa, P.,Ladd, C. ,
    Beheshti, J.,Bueno, R.,Gillette, M.,Loda, M.,Weber, G.,Mark, E.J.,Lander, E.S.,Wong, W., Johnson, B.E., Golub, T.R., Sugarbaker, D.J., Meyerson, M. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Aacd. Sci. USA, 98, 13790–13795.

    Breiman, L.(2001) Random forests. Mach. Learn., 45, 5–32.

    Chen, J.J.,Lee, T., Delonggchamp, R.R., Chen, T. and Tsao, C.A. (2007) Significance analysis of groups of genes in expression profiling studies. Bioinformatics, 23, 2104–2112.

    Dinu, I., Potter, J.D., Mueller, T.,Liu, Qi., Adewale, A.J., Jhangri, G.S. , Einecke, G. , Famulski, K.S., Halloran, P. and Yasui, Y. (2007) Improving gene set analysis of microarray data by SAM-GS . BMC Bioinformatics ,8,242.

    Efron, B. and Tibshirani, R. (2007)” On testing the significance of set s of genes”. Ann. Appl. Stat.,1, 107–129.

    Farmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, P., Larsimont, D., Macgrogan, G., Bergh, J., Cameron, D., Goldstein, D., Duss, S., Nicoulaz, A.L., Brisken, C., Fiche, M., Delorenzi, M., Iggo, R. (2005) Identification of molecular apocrine breast tumours by microarray analysis . Oncogene, 24, 4660–4671.

    Furey, T.S., Cristianini, N., Bednarski, D.W., Schummer, M. and Haussler, D. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data . Bioinformatics,16,906–914.

    Fujita, N. et al.(2003) MTA3, a Mi-2/NuRD Complex Subunit, Regulates an Invasive Growth Pathway in Breast Cancer . Cell,113, 207–219.

    Glazko, G.V. and Emmert-Streib, F. (2009) Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics , 25 , 18

    Goeman, J.J. and Bühlmann, P.(2007) Analyzing gene expression data in terms of gene sets:methodological issues . Bioinformatics,16,906–914.

    Goeman, J.J.,Sara A. van de Geer , Floor de Kort and Hans C. van Houwelingen (2004) A global test for groups of genes: testing association with a clinical outcome . Bioinformatics, 20, 93–99

    Harris, M.A., Clark, J., Ireland, A.,Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C. (2004) The Gene Ontology (GO) database and informatics resource.Nucleic Acids Res., 32, D258–D261.

    Kanehisa, M., Goto, S., Kawashima, S.,Okuno, Y. and Hattori, M. (2004) The KEGG resource for deciphering the genome . Nucleic Acids Res., 32, D277–D280.

    Kong, S.W.,Pu1, W.T. and Park, P.J. (2006) A multivariate approach for integrating genomewide expression data and biological knowledge . Bioinformatics, 22, 2373–2380.

    Liu, Q., Dinu, I., Adewale , A., Potter, J. and Yasui, Y..(2007) Comparative evaluation of gene-set analysis methods .BMC Bioinformatics,8:431.

    Mansmann, U. and Meister, R. (2005) Testing differential gene expression in functional groups: Goeman’s global test versus an ANCOVA approach . Method. Inform. in Med., 44, 449–453.

    Mehra, R.,Varambally, S., Ding, L., Shen R., Sabel, M.S., Ghosh, D., Chinnaiyan, A.M., Kleer, C.G. (2005) Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis .Cancer Res., 65, 11259–11264.



    Menashe, I. , Maeder, D. , Garcia-Closas, M. , Figueroa, J.D., Bhattacharjee, S. Rotunno, M.,Kraft, P., Hunter, D.J., Chanock, S. J., Rosenberg, P.S., and Chatterjee, N. (2010) Pathway Analysis of Breast Cancer Genome-Wide Association Study Highlights Three Pathways and One Canonical Signaling Cascade .Cancer Research,DOI:10.1158/0008-5472.

    Mootha,V.K., Lindgren,C.M., Eriksson,K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E.,Ridderstråle, M., Laurila, E.,Houstis, N.,Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B.,Lander, E.S., Hirschhorn, J.N.,Altshuler, D., Groop, L.C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.,34, 267–273.

    Motoyama,A.B. and Hynes,N.E. (2003) BAD: a good therapeutic target?. Breast
    Cancer Res., 5 (1), 27–30.

    Nam, D. and Kim, S.Y. (2008) Gene-set approach for expression pattern analysis . Brief.Bioinformatics, 9, 189–197

    Ojala, M.and Garriga, G.C.(2010) Permutation Tests for Studying Classifier Performance . Journal of Machine Learning Research,11, 1833-1863

    Pang, H.,Lin,A.,Holford,M.,Enerson, B.E.,Lu, B.,Lawton, M.P.,Floyd, E. and
    Zhao, H. (2006) Pathway analysis using random forests classification and regression. Bioinformatics, 22, 2028–2036.

    Qi, Y.and Klein-Seetharaman, J.(2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction . Proteins, 63, 490–500.

    Rajagopalan, D. and Agarwal, P.(2005) Inferring pathways from gene lists using a literature-derived network of biological relationships . Bioinformatics, 21,
    788–793.

    Schramm, G. , Surmann, E.M., Wiesberg, S., Oswald, M. , Reinelt, G., Eils, R. and Rainer, K.(2010) Analyzing the regulation of metabolic pathways in human breast cancer .BMC Medical Genomics,3:39.

    Shao, W. and Brown, M. (2004) Advances in estrogen receptor biology: Prospects for
    improvements in targeted breast cancer therapy . Breast Cancer Res., 6, 39–52.

    Sotiriou, C., Neo, S.Y. , McShane, L.M., Korn, E.L., Long, P.M., Jazaeri, A., Martiat, P., Fox, S.B., Harris,A.L. and Liu, E.T. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study . Proc. Natl Aacd. Sci. USA,100, 10393–10398.

    Subramanian, A., Tamayo, P., Mootha, V.K. Mukherjee, S., Ebert, B.L., Gillette, M.A. Paulovich, A., Pomeroy, S.L., Golub, T.R. , Lander, E.S. and Mesirov, J.P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles . Proc Natl Acad Sci USA ,102,15545-15550.

    Tian,L., Greenberg,S.A., Kong,S.W. Altschuler, J., Kohane, I.S. and Park, P. J. (2005) Discovering statistically significant pathways in expression profiling studies . Proc. Natl Acad. of Sci. USA, 102, 13544–13549.

    Tsai, C.A., and Chen, J.J. (2009) Multivariate analysis of variance test for gene set analysis . Bioinformatics, 25, 897–903.

    Tibshirani, R. (1996) Bias, variance, and prediction error for classification rules . Technical Report, Statistics Department, University of Toronto.

    Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA, 98, 5116–5121

    Wolpert, D. H. and Macready, W.G. (1999) An efficient method to estimate Bagging’s generalization error . Mach. Learn., 35, 41–55.

    Wright, G. , Tan, B. , Rosenwald, A. , Hurt, E H. , Wiestner, A., and Staudt, L.M. (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma . Proc. Natl Acad. Sci. USA, 100,9991–9996.
    描述: 碩士
    國立政治大學
    統計研究所
    98354014
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098354014
    数据类型: thesis
    显示于类别:[統計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    401401.pdf1043KbAdobe PDF2912检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈