English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51054364      Online Users : 922
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/59969
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59969


    Title: 台股指數交易之研究 – EEMD與ANN方法
    Taiwan weighted stock index trading research-EEMD And ANN method
    Authors: 蔡橙檥
    Contributors: 廖四郎
    蔡橙檥
    Keywords: 類神經網路
    Ensemble Empirical Mode Decomposition
    Artificial Neural Network
    Date: 2010
    Issue Date: 2013-09-04 10:08:23 (UTC+8)
    Abstract: 在台灣證券市場中,有許多的技術分析方法或指標,市場參與者或財
    務學者會利用歷史資料來做回溯測試,找出可運用的方法或指標,以此來
    推測出台股加權指數未來的趨勢,也有學者利用類神經網路(Artificial
    Neural Network, ANN)考慮經濟景氣、技術分析指標等作為輸入變數來預測
    台股加權指數,而本文則利用 EEMD(Ensemble Empirical Mode
    Decomposition)拆解出來的結果作為 ANN 的輸入變數,並將 ANN 預測出
    的值轉換成 FK (Forward-calculated %K) 值,再搭配不同的交易方式,來
    補捉台股加權指數的走勢,並比較各種交易方式的績效,找出一個能夠穩
    定獲利的交易模型。
    Reference: Chena A.S., M.T. Leungb, H. Daouk(2003), “Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index”, Computers & Operations Research 30 (2003) 901–923
    Chan M.C., C.C. Wong, C.C. Lan(2000), “Financial Time Series Forecasting by Neural Network Using Conjugate Gradient Learning Algorithm and Multiple Linear Regression Weight Initialization”, Citeseer (2000)
    Hamid S.A., Z. Iqbal(2004), “Using neural networks for forecasting volatility of S&P 500 Index futures prices”, Journal of Business Research 57(2004) 1116-1125
    Irina K., J. Lelis(2008), “Pre-Processing of Input Data of Neural Networks:The Case of Forecasting Telecommunication Network Traffic”, Telenor ASA(2008)
    Lane G.C.(1984), “Trading Strategies”, Future Symposium International(1984)
    Lin T.W., C.C. Yu(2009), “Forecasting stock market with neural networks”, SSRN Working Paper (2009)
    Quaha T.S., B. Srinivasan(1999), “Improving returns on stock investment through neural network selection”, Expert Systems with Applications 17 (1999) 295–301
    Wu Z.H., N.E. Huang(2009), “Ensemble Empirical Mode Decomposition:A Noise-Assisted Date Analysis Method”, Advances in Adaptive Data Analysis Vol. 1, No.1 (2009) 1-41.

    Yu L., S.Y. Wang , K.K. Lai(2008), “Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm”, Energy Economics 30(2008) 2623-2635
    Zhang, J.Z., “Design and implementation of intelligent stock trading decision support systems using adaptive-structure neural networks”, PhD thesis, Department Of Electrical Engineering, National Taiwan University, 1993
    Zhang X., K.K. Lai, S.Y. Wang (2008), “A new approach for crude oil price analysis based on Empirical Mode Decomposition”, Energy Economics 30(2008) 905-918
    林萍珍(2008), 投資分析:含Matlab應用、類神經網路與遺傳演算法模型
    謝志敏(2007), 希爾伯特黃轉換簡介(Hilbert Huang Transform)
    羅華強編著(2005), 類神經網路 – MATLAB的應用
    Description: 碩士
    國立政治大學
    金融研究所
    98352028
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098352028
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202801.pdf3943KbAdobe PDF2338View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback