Reference: | 任晓丽、刘鲁(民96)。推荐系统研究进展及展望。取自:中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200712-478
張哲銘 (民92)。以使用者偏好分類為基礎之網際資源推薦系統(未出版之碩士論文)。國立台灣大學,台北市。
黃君德 (民91)。電子商業網站產品推薦系統的研究與實作(未出版之碩士論文)。國立台灣大學,台北市。
楊亨利、黃仁智(民97)。具整體觀點考量之推薦系統:以家庭親子為例,中華管理評論國際學報,11(3),1-26。
Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 178(1), 37-51. doi:10.1016/j.ins.2007.07.024
Alton-Scheidl, R., Ekhall, J., van Geloven, O., Kovács, L., Micsik, A., Lueg, C.,…Wheeler, R. (1999). SELECT: social and collaborative filtering of web documents and news. Proceedings of the 5th ERCIM Workshop on User Interfaces for All, pp. 23-27.
Armstrong, R., Freitag. D., Joachims, T. & Mitchell, T. (1995). WebWatcher: a learning apprentice for the world wide web. Proceedings of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 6-12.
Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72. doi:10.1145/245108.245124
Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing & Management, 48(2), 204-217. doi:10.1016/j.ipm.2011.03.007
Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Gregory F. Cooper & Serafín Moral (Eds.), Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence (pp. 43-52). San Francisco, CA: Morgan Kaufmann.
Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems: Implementation and Evaluation.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. doi:10.1145/138859.138867
Han, P., Xie, B., Yang, F., & Shen, R. (2004). A scalable P2P recommender system based on distributed collaborative filtering. Expert Systems with Applications, 27(2), 203-210. doi:10.1016/j.eswa.2004.01.003
Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in computing systems, pp. 194-201. doi:10.1145/223904.223929
Huang, Z., Chen, H., & Zeng, D. (2004). Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 22(1), 116-142. doi:10.1145/963770.963775
Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In William R. Swartout (Ed.), Proceedings of the 10th National Conference on Artificial Intelligence (pp. 223-228). San Jose, CA: AAAI Press.
Lemire, D., & Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. Proceedings of SIAM Data Mining Conference, pp. 471-475.
Li, Q., & Kim, B. M. (2003). Clustering Approach for Hybrid Recommender System. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, pp. 33-38. doi:10.1109/WI.2003.1241167
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. doi:10.1109/MIC.2003.1167344
Melville, P., & Sindhwani, V. (2010). Recommender systems. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 829-838). Boston, MA: Springer.
Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151. doi:10.1145/345124.345169
Papagelis, M., & Plexousakis, D. (2005). Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence, 18(7), 781-789. doi:10.1016/j.engappai.2005.06.010
Pazzani, M. J. (1999). A Framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408. doi:10.1023/A:1006544522159
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: Learning new user preferences in recommender systems. Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 127-134. doi:10.1145/502716.502737
Resnick, P., Iacovou , N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of Netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175-186. doi:10.1145/192844.192905
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121
Ricci, F. (2002). Travel recommender systems. IEEE Intelligent Systems, 17(6), 55-57.
Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000a). Application of dimensionality reduction in recommender system -- a case study (Technical Reports 00-043). Retrieved from University of Minnesota Computer Science Technical Reports Archive website: http://www.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000b). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158-167. doi:10.1145/352871.352887
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, pp. 285-295. doi:10.1145/371920.372071
Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system. Proceedings of the 1998 ACM conference on Computer supported cooperative work, pp. 345-354. doi:10.1145/289444.289509
Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166. doi:10.1145/336992.337035
Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating “word of mouth”. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210-217. doi:10.1145/223904.223931
Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253-260. doi:10.1145/564376.564421
Shin, Y., & Liu, D. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35(1-2), 350-360. doi:10.1016/j.eswa.2007.07.055
Su, J. H., Wang, B. W., Hsiao, C. Y., & Tseng, V. S. (2010). Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Information Sciences, 180(1), 113-131. doi:10.1016/j.ins.2009.08.005
Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques, Advances in Artificial Intelligence, 2009, 1-19. doi:10.1155/2009/421425
Van Rijsbergen, C. J. (1979). Information Retrieval. London, England: Butterworths. Retrieved from http://www.dcs.gla.ac.uk/Keith/Preface.html
Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., & Chen, Z. (2005). Scalable collaborative filtering using cluster-based smoothing. Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 114-121. doi:10.1145/1076034.1076056
Yuan, X., & Wu, P. (2012). Content-based recommendation model in micro-blogs community. Proceedings of 2012 International Conference on Management of e-Commerce and e-Government, pp. 165-168. doi:10.1109/ICMeCG.2012.40
Zhang, D. J. (2009). An item-based collaborative filtering recommendation algorithm using slope one scheme smoothing. In Li, M., Yu F., Shu, J., & Chen, Z. G. (Eds.), Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security: Vol. 2. (pp. 215-217). Washington, DC: IEEE Computer Society. doi:10.1109/ISECS.2009.173 |