政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/59303
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50962711      Online Users : 969
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/59303
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59303


    Title: 改良式協同過濾推薦系統之架構與評估
    A framework and evaluation of recommendation system using modified collaborative filtering method
    Authors: 張玉佩
    Contributors: 李有仁
    張玉佩
    Keywords: 推薦系統
    協同過濾
    資料稀疏性
    冷開始
    Date: 2012
    Issue Date: 2013-09-02 16:02:19 (UTC+8)
    Abstract: 協同過濾是電子商務中最常被使用也是最成功的推薦技術,但隨著電子商務的發展,網站使用者與商品數也迅速成長,使得使用者相關資料稀疏(Data sparsity)而嚴重影響推薦品質。對於新使用者與新商品,協同過濾也無法提供準確的推薦。為改善以上問題,本研究使用Lemire與Maclachlan (2005)所提出的Slope One演算架構及資料探勘方法中的單純貝式分類器(Naïve bayes classifier)來解決資料稀疏性和冷開始(Cold-start)問題。同時,考量到運算成本,將推薦系統架構分為離線預處理階段和線上預測階段,以避免當使用者數目和商品越來越大時運算成本超過實際可接受程度。
    本研究採用MovieLens資料庫的資料集,包含943位使用者與1,682部電影,共10萬筆評比資料,評比分數範圍從1到5分,其中每位使用者至少評比20部以上電影。實驗評估方法則採用平均絕對誤差(MAE)來計算本研究的推薦系統對消費者喜好預測的準確度。
    本研究希望所提出的個人化推薦系統能改善傳統協同過濾推薦系統的推薦品質,減少資料稀疏所造成的推薦誤差,更準確的推薦使用者感興趣的物品,以幫助使用者更有效率的進行線上消費,提高顧客滿意度與忠誠度,也提升電子商務網站營業效益。
    Reference: 任晓丽、刘鲁(民96)。推荐系统研究进展及展望。取自:中国科技论文在线,http://www.paper.edu.cn/index.php/default/releasepaper/content/200712-478
    張哲銘 (民92)。以使用者偏好分類為基礎之網際資源推薦系統(未出版之碩士論文)。國立台灣大學,台北市。
    黃君德 (民91)。電子商業網站產品推薦系統的研究與實作(未出版之碩士論文)。國立台灣大學,台北市。
    楊亨利、黃仁智(民97)。具整體觀點考量之推薦系統:以家庭親子為例,中華管理評論國際學報,11(3),1-26。

    Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 178(1), 37-51. doi:10.1016/j.ins.2007.07.024
    Alton-Scheidl, R., Ekhall, J., van Geloven, O., Kovács, L., Micsik, A., Lueg, C.,…Wheeler, R. (1999). SELECT: social and collaborative filtering of web documents and news. Proceedings of the 5th ERCIM Workshop on User Interfaces for All, pp. 23-27.
    Armstrong, R., Freitag. D., Joachims, T. & Mitchell, T. (1995). WebWatcher: a learning apprentice for the world wide web. Proceedings of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 6-12.
    Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72. doi:10.1145/245108.245124
    Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing & Management, 48(2), 204-217. doi:10.1016/j.ipm.2011.03.007
    Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Gregory F. Cooper & Serafín Moral (Eds.), Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence (pp. 43-52). San Francisco, CA: Morgan Kaufmann.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. Proceedings of ACM SIGIR Workshop on Recommender Systems: Implementation and Evaluation.
    Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70. doi:10.1145/138859.138867
    Han, P., Xie, B., Yang, F., & Shen, R. (2004). A scalable P2P recommender system based on distributed collaborative filtering. Expert Systems with Applications, 27(2), 203-210. doi:10.1016/j.eswa.2004.01.003
    Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices in a virtual community of use. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in computing systems, pp. 194-201. doi:10.1145/223904.223929
    Huang, Z., Chen, H., & Zeng, D. (2004). Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 22(1), 116-142. doi:10.1145/963770.963775
    Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In William R. Swartout (Ed.), Proceedings of the 10th National Conference on Artificial Intelligence (pp. 223-228). San Jose, CA: AAAI Press.
    Lemire, D., & Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. Proceedings of SIAM Data Mining Conference, pp. 471-475.
    Li, Q., & Kim, B. M. (2003). Clustering Approach for Hybrid Recommender System. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, pp. 33-38. doi:10.1109/WI.2003.1241167
    Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80. doi:10.1109/MIC.2003.1167344
    Melville, P., & Sindhwani, V. (2010). Recommender systems. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 829-838). Boston, MA: Springer.
    Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151. doi:10.1145/345124.345169
    Papagelis, M., & Plexousakis, D. (2005). Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence, 18(7), 781-789. doi:10.1016/j.engappai.2005.06.010
    Pazzani, M. J. (1999). A Framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408. doi:10.1023/A:1006544522159
    Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: Learning new user preferences in recommender systems. Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 127-134. doi:10.1145/502716.502737
    Resnick, P., Iacovou , N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of Netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175-186. doi:10.1145/192844.192905
    Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. doi:10.1145/245108.245121
    Ricci, F. (2002). Travel recommender systems. IEEE Intelligent Systems, 17(6), 55-57.
    Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill.
    Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000a). Application of dimensionality reduction in recommender system -- a case study (Technical Reports 00-043). Retrieved from University of Minnesota Computer Science Technical Reports Archive website: http://www.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf
    Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000b). Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158-167. doi:10.1145/352871.352887
    Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, pp. 285-295. doi:10.1145/371920.372071
    Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system. Proceedings of the 1998 ACM conference on Computer supported cooperative work, pp. 345-354. doi:10.1145/289444.289509
    Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166. doi:10.1145/336992.337035
    Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating “word of mouth”. CHI `95 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210-217. doi:10.1145/223904.223931
    Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253-260. doi:10.1145/564376.564421
    Shin, Y., & Liu, D. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35(1-2), 350-360. doi:10.1016/j.eswa.2007.07.055
    Su, J. H., Wang, B. W., Hsiao, C. Y., & Tseng, V. S. (2010). Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Information Sciences, 180(1), 113-131. doi:10.1016/j.ins.2009.08.005
    Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques, Advances in Artificial Intelligence, 2009, 1-19. doi:10.1155/2009/421425
    Van Rijsbergen, C. J. (1979). Information Retrieval. London, England: Butterworths. Retrieved from http://www.dcs.gla.ac.uk/Keith/Preface.html
    Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., & Chen, Z. (2005). Scalable collaborative filtering using cluster-based smoothing. Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 114-121. doi:10.1145/1076034.1076056
    Yuan, X., & Wu, P. (2012). Content-based recommendation model in micro-blogs community. Proceedings of 2012 International Conference on Management of e-Commerce and e-Government, pp. 165-168. doi:10.1109/ICMeCG.2012.40
    Zhang, D. J. (2009). An item-based collaborative filtering recommendation algorithm using slope one scheme smoothing. In Li, M., Yu F., Shu, J., & Chen, Z. G. (Eds.), Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security: Vol. 2. (pp. 215-217). Washington, DC: IEEE Computer Society. doi:10.1109/ISECS.2009.173
    Description: 碩士
    國立政治大學
    資訊管理研究所
    99356035
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0993560351
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2340View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback