Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/56886
|
Title: | 最大係數多項式之快速計算法 Fast Computation of Largest Coefficient Polynomials |
Authors: | 林容溶 |
Contributors: | 蔡炎龍 林容溶 |
Keywords: | 最大係數熱帶多項式 |
Date: | 2012 |
Issue Date: | 2013-02-01 16:53:23 (UTC+8) |
Abstract: | 本篇主要討論快速計算最大係數熱帶多項式的方法。首先我們比較古 典幾何和熱帶幾何中多項式的異同。為了讓熱帶多項式有如古典多項 式的唯一表示,我們必須要定義最大係數多項式。接著我們討論一元 二次最大係數多項式的性質,並更進一步找出任意次數最大係數多項 式的判斷與計算方式。 The goal of this thesis is to find fast computing methods of largest coefficient tropical polynomials. First, we compare the difference between classical polynomials and tropical polynomials. In order to have the unique representation for any tropical polynomials, we have to define so called the largest coefficient polynomial. We then discuss the property of the largest coefficient polynomials of degree two. Finally, we find different methods to determine of the largest coefficient polynomials with arbitrary degrees. |
Reference: | [1] 林如苹, Largest-coefficient Tropical Polynomials and Their Applications, PhD thesis, National Chengchi University, 2009. [2] 黃馨儀, On Tropical Conics, PhD thesis, National Chengchi University, 2010. [3] A. Gathmann, Tropical algebraic geometry, Jahresber. Deutsch. Math.-Verein., 108 (2006), pp. 3–32. [4] N. B. Grigg, Factorization of Tropical Polynomials in One and Several Variables, PhD thesis, Brigham Young University, 2007. [5] Y.-L. Tsai, Working with tropical meromorphic functions of one variable, Taiwanese J. Math., 16 (2012), pp. 691–712. 46 |
Description: | 碩士 國立政治大學 應用數學系數學教學碩士在職專班 99972013 101 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0099972013 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
201301.pdf | 1478Kb | Adobe PDF2 | 509 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|