政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/54644
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51121295      Online Users : 859
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54644


    Title: 二維平滑熱帶環面法諾曲體之研究
    On Two-Dimensional Smooth Tropical Toric Fano Varieties
    Authors: 陳振偉
    Chen, Chen Wei
    Contributors: 蔡炎龍
    Tsai, Yen Lung
    陳振偉
    Chen, Chen Wei
    Keywords: 熱帶環面法諾曲體
    Tropical Toric Fano Varieties
    Date: 2011
    Issue Date: 2012-10-30 11:27:55 (UTC+8)
    Abstract: 這篇論文裡,我們研究熱帶環面曲體,尤其是熱帶環面法諾曲體。如同古典代數幾何裡的情況一樣,要建構熱帶環面曲體,我們先從扇型開始建構。然而在某些結構裡沒辦法有熱帶化的對應,因此我們需要選一個適當的定義,這個定義必需可看成是古典情況類推而來的。在我們的論文中,使用我們認為合適的定義,計算所有平滑二維熱帶環面法諾曲體的情況,結果也證實非常類似古典的情形。
    In this thesis, we survey and study tropical toric varieties with focus on tropical toric Fano varieties. To construct tropical toric varieties, we start with fans, just like the situation in classical algebraic geometry. However, some constructions does not make sense in tropical settings. Therefore, we need to choose a reasonable definition which give an analogue of a classical toric variety. In the end of this paper, we use the definition we choose, and explicitly calculate all smooth two-dimensional tropical toric Fano varieties which we found are very similar to classical cases.
    Reference: Bibliography
    [1] Danko Adrovic and Jan Verschelde. Tropical algebraic geometry in maple, a preprocessing algorithm for finding common factors to mul- tivariate polynomials with approximate coefficients. September 2008.
    [2] T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas. Computing tropical varieties. J. Symbolic Comput., 42(1-2):54–73, 2007.
    [3] E. Brugall ́e. Deformation of tropical hirzebruch surfaces. http: //www.math.jussieu.fr/~brugalle/articles/TropDegHirzebruch/ TropDeg.pdf.
    [4] W. Bruns and J. Gubeladze. Polytopes, Rings, and K-Theory. Number 978 0-76352 in Springer Monographs in Mathematics. Springer, 2009.
    [5] D.A. Cox, J.B. Little, and H.K. Schenck. Toric Varieties. Graduate Studies in Mathematics. American Mathematical Society, 2011.
    95
    [6] David Eisenbud and Joe Harris. The Geometry of Schemes. Springer, November 2001.
    [7] Gu ̈nter Ewald. Combinatorial Convexity and Algebraic Geometry (Grad- uate Texts in Mathematics). Springer, October 1996.
    [8] William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton, NJ, 1993.
    [9] Andreas Gathmann. Algebraic geometry, 2002. [10] Andreas Gathmann. Tropical algebraic geometry. Jahresber. Deutsch.
    Math.-Verein., 108(1):3–32, 2006.
    [11] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Modern Birkha ̈user Classics. Birkh ̈auser, 2008.
    [12] Branko Gru ̈nbaum. Convex Polytopes : Second Edition Prepared by Volker Kaibel, Victor Klee, and Gu ̈nter Ziegler (Graduate Texts in Math- ematics). Springer, May 2003.
    [13] Ilia Itenberg, Grigory Mikhalkin, and Eugenii Shustin. Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkh ̈auser Verlag, Basel, second edition, 2009.
    [14] A Kasprzyk. Toric Fano Varieties and Convex Polytopes. PhD thesis, 2006.
    96
    [15] Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geome- try. October 9, 2009.
    [16] G.G. Magaril-Ilyaev and V.M. Tikhomirov. Convex Analysis: Theory and Applications. Translations of Mathematical Monographs. American Mathematical Society, 2003.
    [17] H. Meyer. Intersection Theory on Compact Tropical Toric Varieties. Sudwestdeutscher Verlag F R Hochschulschriften AG, 2011.
    [18] G. Mikhalkin. Amoebas of algebraic varieties and tropical geometry. ArXiv Mathematics e-prints, February 2004.
    [19] Grigory Mikhalkin. Enumerative tropical algebraic geometry in R2. J. Amer. Math. Soc., 18(2):313–377 (electronic), 2005.
    [20] Grigory Mikhalkin. Tropical geometry and its applications. In Interna- tional Congress of Mathematicians. Vol. II, pages 827–852. Eur. Math. Soc., Zu ̈rich, 2006.
    [21] Grigory Mikhalkin and Ilia Zharkov. Tropical curves, their jacobians and theta functions, November 2007.
    [22] T. Oda. Convex bodies and algebraic geometry: an introduction to the theory of toric varieties : with 42 figures. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1988.
    97
    [23] Ju ̈rgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald. First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289–317. Amer. Math. Soc., Providence, RI, 2005.
    [24] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
    [25] K.E. Smith. An Invitation to Algebraic Geometry. Universitext (1979). Springer, 2000.
    [26] David Speyer and Bernd Sturmfels. Tropical mathematics. Math. Mag., 82(3):163–173, 2009.
    [27] Thorsten Theobald and Thorsten Theobald. Computing amoebas. Ex- perimental Math, 11:513–526, 2002.
    [28] Gunter M. Ziegler. Lectures on Polytopes (Graduate Texts in Mathe- matics). Springer, November 1994.
    Description: 碩士
    國立政治大學
    應用數學研究所
    96751007
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096751007
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    100701.pdf3537KbAdobe PDF2786View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback