On Two-Dimensional Smooth Tropical Toric

Fano Varieties

T TR AR B @ik o W R TR

FAEIRE A RIRAE 12



% [N %ETJ‘

ARSI TER, BRI EIEH AR AEAT: BRIGERM. ZREEM. &

atid

Iz IEEHT. &R BRI e B EIR R R, R EBGE AR RARITHR, E
WEBMLARZRERER G LR/ ERFHE, THERE TRURELES
A ARREREER, PR GHEES 1. Bk TR _LAVTEE, A
HIEE W EECE, LH R ERMRAR SR E [0y ), ERE TR, HfRE—
FCRINENS , Ty AR T B, H B RAGE & T EuyErt, &

it

HR MR, HRIREE 1, NEFRB SRR, T EZ L2 BEHEm
WERIFRATERER, ERRREE T, HRRRI S EMNE TEE, BNREHE

Filio

REHBRAREE, (R R LREMR S R, Wb 88— LB, 1~
WPGEMLA R YRR A, BRI RERHIRE Ml G B, BA 5 S A
&, AR E Rk, AREMEHMBNRAT 2B, IUREERES LT
FIFTRALEE, RS REE, ERRESEMERERARE R, ¥
GO ERRNE S, BRER T DA, AR 78R LNECE, FRER
RECHRRBERMELES:, B EIREERMAR L B8, BREELE
EARFHRIEESISRIIIR, B BRI BABKRERRZ —, K IE RS
RAEFHNIE R FRECE B IR

R RIZIEZA, SORRERTE REHE i T OISR L, A/NOEEEI T

i



B RIZIEBEMEVFHE, s [MLERFEERE ], ATl &I EhiE 2 H]
REEZ|, B R FEFRRZ IR BRI RE LR AEHNE, NitERE
By, EMUHEEGRTHEELSERNER, UG TIFLARIERE, HEHR
HUEm CREATE NS B, BB BUTR THEEN T, Nt EREMRZ
K, AREEREREHE BT T &

R OAZ EGERERE BN, 60 E Tz T8 TR B B R S He b
HHYEREGER e, B ERIFRCR] DUE o %, B AR EH.

RER AR, RRE TR RBEIE, EREREGEREE R, hEK
FESER 3 X, W] LIS RE T AR — LRSS, 1270 R A A R pr AR

SR R KR F M DS, EREGEML AT AL, e 7%
BAIAREE, BRORTEEFR—LRBE R, EEHA LAEH LB R
HIEm SO, BB CEIME &

RARRMERBEARENVEIC, TEAERELERAEE L, REEIGEE
HER, 6T TREEY, LHRLEMFEBEFF L NEENE, ERERELY
HoE@iE Bl IR T, BFILINIRE —EZ SRR, nE&—%4
HAE, DKERESE, BT LUERERIR AT, EERHERAEEEENE
&, FIRSERE R T A RS EIC. AIMUEIREE S R T RREEBER T
WhBh, FEBEFRMYELE, WEICRRS TN TIE, BRREEERER—EZH T
AR, BRSO EEF AN EANE, i T RIRS . I H RS,

i



WEFICHK—LEREME, E7 EFRE—ETmsE, THEFERRIRER R
e K R RBAL (HRERM), MBS uRaY T AEREST ENNEE A, &0 B H A
B, RIS 255k, ERFRAFTME, BRABAE —BRRIY AT,

BRI B SRR OREBE R MM, SE AR B2 iR b MR, (B
MR BIR 2 E BIIRSCRF, A LA IR HFEE R _ BB P, R AL
THRBEBEARIE, RN MRS SRR TR RATR .

il



Abstract

In this thesis, we survey and study tropical toric varieties with focus on
tropical toric Fano varieties. To construct tropical toric varieties, we start
with fans, just like the situation in classical algebraic geometry. However,
some constructions does not make sense in tropical settings. Therefore, we
need to choose a reasonable definition which give an analogue of a classical
toric variety. In the end of this paper, we use the definition we choose, and
explicitly calculate all smooth two-dimensional tropical toric Fano varieties

which we found are very similar to classical cases.
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Chapter 1

Introduction

The tropical geometry is a relatively recent subject in the field of mathe-
matics. Why does it have an adjective "tropical”? In the 1980s, Imre Simon
(August 14, 1943 - August 13, 2009) who is a Hungarian-born Brazilian
mathematician and computer scientist pioneered the tropical geometry. The
word "tropical” was coined by some French mathematicians in honor of Imre
Simon, because they thought Brazil is a tropical country. Hence there is not
any deeper meaning in an adjective "tropical”, and this is why the tropical

geometry is not called "temperate geometry” or ”frigid geometry”.

Why the mathematicians attend to the tropical geometry in recent years?

Because Grigory Mikhalkin has proven that the number of simple tropical



curves (counted with appropriate multiplicities) of degree d and genus ¢ that
pass through g + 3d — 1 generic points in R? is equal to the Gromov-Witten
number N, 4 of the complex projective plane CTP?, so the theorem is called

Mikhalkin’s correspondence theorem, see [19].

The main reference is the paper [17] by Henning Meyer. Some difference
are that we prove some propositions and provide more details with examples
and figures. Moreover, this paper main discusses about the smooth tropical
toric Fano varieties on two dimensional. The tropical toric variety and toric
varieties have the similar properties, for example, the tropical toric variety
Xa(T) ~ TP? where TP is the tropical projective space in the Example 4.3.2,
and the toric variety XA (T) ~ CP? where CP is the complex projective space

in the Example 3.3.18.

The structure of the paper is as follows. In chapter 2, we recall the
semigroup, semiring and semifield, and introduce amoebas and the tropical
geometry where the tropical semifield (T, ®, ®) is a semifield with two oper-
ations a ®b := max{a, b} and a ®b := a+b. Note that some papers or books
may be defined the tropical sum by a @ b := min{a, b} (e.g. [15]), in fact,
the algebraic structures of max-algebra and min-algebra are isomorphic. For

more information see [13], [20], [10], [23] and [26].



In chapter 3, we review some basic concepts of polyhedral geometry and
explain how they relate to toric varieties. For more details see [5], [22], [14],
[12], [11], [4], [28], [24] and [16]. And we will give a brief introduction to
Fano varieties and Fano polytopes. For careful statement see [14], [22] and

[5].

In the first part of the chapter 4, we describe the relationship between
K(G,R, M), hom(S, M), and explain the relationship between the algebraic
structures of K(G, R, M) and the algebraic structures of M. In the setion 2
and 3 of chapter 4, we explain the properties of tropical toric varieties, and

calculate five types of the smooth tropical toric Fano varieties.



Chapter 2

Background

The chapter contains some basic definitions and propositions from trop-

ical geometry.

2.1 Non-Archimedean amoebas

In this section, we recall the valuation and amoebas. And we set C* =
C\ {0} in this paper. Let K be an algebraic closed field (e.g. C), and let A™

denote an affine n-space over K.



Firstly, we define a map Log : (C*)" — R™ by

LOg(Zl, R Zn) = (lOg ‘Zl|7 s 710g |Zn|)

Let u = (uq,...,u,) be in Z", then we said that 2" = 2{"25%--- 2" is
the Laurent monomial. Moreover, the Laurent polynomial f is a finite linear
combination of Laurent monomials, that is, f =" ... a,2" where a, is in

a field I (as C) and is only finitely many. Denoted by F[2F', ..., 2] is the

ring of Laurent polynomials in n variables over F'.

Definition 2.1.1. An affine algebraic variety is the common zero set of a

collection {F;};c; of complex polynomials. We write

V =V{Elier) = {(x1, .., 20) €C" | F(a1,...,20) =0Y i€ I}

where F; = Fi(z1,...,2,) € C[xy, ... 2]

Example 2.1.2. There are some trivial cases of algebraic varieties.



For any subset S of C*[2!, ..., 2], we denote by

Z(S)={z€(C")"| f(z) =0forall fe S},

that is, Z(S) is the common zero set of a collection {f;};c; of Laurent poly-

nomials in a subset S of C*[z{, ..., 2

Definition 2.1.3. We define the amoeba of Z(S) as A(Z(S)) = Log(Z(S))

which is a subset of R™.

Remark 2.1.4. Let V be an algebraic variety, then we can also define the
amoeba of algebraic variety by A(V) := Log(V).

Example 2.1.5. Let f = ézl + %zg — 1 in C*[z,2). If f = 0, then
29 = —%zl + g, and so V(f) = {(t,—%t + §)|t € C}. Then A(V(f)) =

Log(V(f)) = (log [t|,log | — {5t + £]).

For more information about the amoebas see [11] chapter 6 and [27]. The
figure of the amoeba is used for GeoGebra (Curve[ln(abs(t)), in(abs(exp(—5/7)—
txexp(—8/21))),t,—100,100]) or we can also use for maple, for more details

see [1].

Next, we define a map Log; : (C*)" — R™ by

LOgt<21, SR >Zn) = (logt ’Zl|’ s 710gt |Zn|)

6



Figure 2.1: The amoeba A(Z(f)) for f =3z 4+ 220 — 1.

T8

for small ¢ in R. And we denote by

Let the amoeba of Z; as A;(Z;) == Log;(Z;) which is a subset of R". Similarly,
if V; is an algebraic variety which depend on a parameter ¢ , then we can also

define the amoeba of algebraic variety by A;(V;) == Log:(V}).

We recall that the Hausdorff distance. Let (M,d) be a metric space,
and let A and B be two non-empty subsets of (M, d). Then we define the

Hausdorff distance dy (A, B) between A and B by

dy (A, B) = max{sup inf d(a,b),sup inf d(a,b)}.
b

acA bEB cp acA



On R”, the subsets A; converges to A as t — oo in the Hausdorff metric
on compacts, that is, for any compact set D in R”, and there exists a neigh-
borhood U of D such that dg(A;NU,ANU) — 0 ast — oo ([13], Prop. 1.2

and [18], Prop. 1.6 ).

Definition 2.1.6. The set C{{t}} is called the field of Puiseux series with
complex coefficients if C{{t}} is the set of all formal power series a(t) =
> qcq 4qt? where a4 is in €* and {q} is bounded below and has a finite set of

denominators, that is,

C{{t}} =D _ait’" | a; € C*,m € Z,n € Zx}.

i=m

We set C{{t}} = K from now on.

Definition 2.1.7. Let K be a field of Puiseux series. A non-Archimedean

valuation on K is a function
val : K — RU{—o00}

satisfying the properties:

(i) val(a) = —o0 if and only if a = 0,

(i) val(ab) = val(a) + val(b),



(ili) wval(a + b) < mazx{val(a),val(b)}.

For each a in K with a # 0, we define the valuation of a by val(a) =
min{q | a, # 0} (since {q} is bounded below). And we define a norm by
|a|yar = exp(val(a)). Let Vi be an algebraic variety on (K*)", we define a

map Val : (K*)* — R" by

Val(zi, ..., zy) = (1og|21]vats - - - ;108 |2nlvar) = (val(z1), ..., val(zy,)).

Then we can also define the amoeba of algebraic variety Vx on (K*)" by

A(V) = Val(Vy).

Theorem 2.1.8 (a version of Viro patchworking). Let V; be an algebraic
variety for small ¢ in R, and let Vi be an algebraic variety on (K*)", then
the non-Archimedean amoeba A(Vk) is the limit of the amoebas A;(V;) as

t — oo with respect to the Hausdorff metric on compacts.

2.2 Semifield

In this section, we will introduce the semigroup, semiring, and semifield.

Definition 2.2.1. Let G be a nonempty set. A binary operation in G is a
function * : G x G — G. We denote the element f(a,b) of G by a b for all

9



(a,b) € G. The set G is said to be closed under the binary operation * and

denoted by (G, *).

The usual addition and multiplicative are two binary operations on R.

Definition 2.2.2. A semigroup is a nonempty set G together with a binary
operation * which satisfies associative, that is, (a * b) x ¢ = a * (b* ¢) for all

a,b,c €.

A semigroup (G, %) is called a commutative if axb = bxa for all a,b € G.

A semigroup (G, ) is called idempotent if a x b € {a, b} for all a,b € G.

Definition 2.2.3. A monoid is a semigroup G' with an identity element e,

that is, axe =e*xa=a for all a € G.

Proposition 2.2.4. Every group is a monoid.

Proof. Let G be a group. According to the definition of group, G is closed

under a binary operation *, and G satisfies associative and has an identity

element e, hence G is a monoid.

Example 2.2.5. Let (2Z-0, *) be the set of the positive even integers under
the usual multiplication of real numbers. Suppose that x, y, and z belong to

27~, then xx (yx z) = (z*xy) * 2, so 27~ satisfies associative. But 1 is not

10



even, that is, 1 is not in 2Zg, so 2Z.~o does not have an identity element.

Hence (27, %) is a semigroup which is not a monoid.

Definition 2.2.6. Let S; and S5 be semigroup. A map @ : S; — S5 is a

morphism of semigroup if ¢ (zy) = ¢ (x)(y) for all z,y in S;.

Example 2.2.7. Define a map ¢ : (Zsg,+) — (Z4,+) by ¢(z) = z, for all x
in Z-o. Forall z, y in Z~o, ¢(x +y)=v+y =T+ 7y = ¢(z) + ¢(y). Hence

¢ is a morphism of semigroup.

Definition 2.2.8. A semiring is a nonempty R together with two binary
operations

G:RXxR—-Rand ®: Rx R— R

such that (R, ®) is a commutative monoid with identity element Og, (R, ®)
is a semigroup, and the operation ® distributes over @, that is, a® (b® ¢) =

a®b®a®cwhere a, b, ¢ are in R.

Note that, according to the definition of ring, every ring is a semiring.

Definition 2.2.9. A semifield is a semiring (R, ®, ®) together with (R\{0gr}, ®)
is an abelian group where Op is an identity element for the binary operation

b.

Note that, by the definition of ring, every field is a semifield.

11



Example 2.2.10. Let T = R U {—occ}. We define two operations on T
by a ® b := max{a,b} and a ® b := a + b. Suppose that a and b, and ¢
are in T. Without loss of generality, assume that a > b. Becuase a ® b =
max{a,b} = a is in T, so T is closed under a binary operation @&. If a
and b are in R, then a ® b = a + b is in R; if one of a and b is —oo, then
a®b= —o0, and so T is closed under a binary operation ®. Suppose that
a, b, and c are in T. Without loss of generality, assume that a > b > c.
Because a @ (b @ ¢) = max{a, max{b, c}} = max{a,b} =a and (a ®b) ®c=
max{max{a, b}, c} = max{a,c} =a,s0a®(bBc) = (a®b)Dc,ie (T,D)is
a semigroup. Since —co P a = a P —oo = a, —o0 is an identity element, and
so a®b = bda = max{a, b}, that is, (T, ®) is a monoid with identity element
—00. Moreover, a®b = max{a, b} = bda, so (T, ) is a commutative monoid.

Since (T\{—o0}, ®) = (R, +) is abelian group, (T, &, ®) is a semifield.

The above T will be discussed in more details in the next section.

2.3 'Tropical Semifields

Definition 2.3.1. Let T = RU {—o0}. The tropical semifield (T, ®, ®) is
the semifield with operations a @ b := max{a,b} and a ® b := a + b. (c.f.
Example 2.2.10)

12



Remark 2.3.2. Since (T\{—o00}, ®) is an abelian group, we can define the
tropical division by

Ty =1 -y,
for all x and y in T\{—o0}.

Proposition 2.3.3. (a) Both addition and multiplication are commutative:
r@y=y®rand Oy =y oz (b) The distributive law holds for tropical

addition and tropical multiplication: z ® (y@® z2) =2 Qyd z O 2.

Proof. (a) (i) z®y = max{z,y} = max{y,a} =y Dz,

i) z0y=c+y=y+r=y0ux.

(b)) 20 (y®z2) =+ (y® 2) = z + max{y, 2z} = max{z +y,x + 2} =

(z+yY)D(r+2)=20yYdr0 2.

Remark 2.3.4. For all integer n and all x in T, we define

n
2= -0x = E T = nx.
i1

Note that —oo is the additive identity and zero is the multiplicative unit,

that is, t @ (—o0) =z and 2 © 0 = x.
Definition 2.3.5. The R" is a module over the tropical semiring

13



(RU{o0},®,®), with the operations of coordinatewise tropical addition

(ab e 7an) > (bh e 7bn) - (max{ala bl}7 e 7maX{an7 bn})

and tropical scalar multiplication

)\Q(a/h'” 7an) = ()\—i_al"" 7)‘+an)

Definition 2.3.6. Let (M, @)/) be a commutative monoid over tropical semi-
field T. Then M is called a tropical module if there exists a scalar multipli-
cation ®p; @ T x M — M denoted by ©p(t,m) =t @y o for all ¢t in T and

x in M, such that for all ¢;, ¢ in T and z, y in M,

(i) t1Om (2 Bmy) = (b1 Om ) By (B Om Y);

(ii) 1, On (L2 O x) = (1 @ L) Onr ;5

(i) 1 ®pa x = z where 1p = 0 is the multiplicative identity of T;

(iv) if t; Oy & = ty Oy x then either t; =ty or x = —o0.

For careful statements, we refer the reader to [21].

Definition 2.3.7. A T-vector space or tropical vector space M over T con-
sists of a commutative monoid (M, @) and @y : T x M — M such that

14



for all t1, to in T, x, y in M, we have:

(i) t1Om (z @m y) = (th Om @) Dy (b Omr y);

(i) 6 Oum (2 Op ) = (81 O ta) O a;
(iii) 1t ®p x = x for the tropical multiplicative identity 1.
(iv) (t1 @ t2) Oz = (tr O @) Dur (t2 Onr @);

Definition 2.3.8. The tropical projective n-space, denoted by TP", is de-

fined as the quotient

(T \ (~c0,.. -, —oo))/N,

where ~ denotes the equivalence relation, (z,...,%,) ~ (vo,...,yn) if and
only if there exists a X in T* such that (yo,...,yn) = (A O zg,..., A O x,) =

A+, ..., A+ zp).

Definition 2.3.9. Fix a weight vector w = (wy,...,w,) € R". The weight of

the variable x; is w;. The weight of a term p(t) - 7" - - - 2%~ is the real number
order(p(t)) + aqwy + - -+ + Qpwy.

Definition 2.3.10. The tropical monomial is defined to be an expression of

15



the form

cOIT OOl

where a1, -+ ,a, € Z>( and c is a constant.

Definition 2.3.11. The finite linear combination of tropical monomials is
called a tropical polynomial. Namely, f =c¢; ©z{" @ - Q28" @ - - D ©

a
$1k1®®x?flkn

Definition 2.3.12. Consider a polynomial f € Clxy,...,z,] and a vector
w € R™ the initial form in,(f) is the sum of all terms in f of smallest

w-weight.

Definition 2.3.13. The tropical hypersurface of f is the set

T(f) ={w e R™ | in,(f) is not a monomial}.

Remark 2.3.14. All of points w of the T (f) are attained by at least two of
the linear functions. Note that 7 (f) is invariant under dilation, so we can
say T(f) by giving its intersection with the unit sphere. (See [2] and the

references therein)

16



Chapter 3

Toric variety and Fano variety

We begin by recalling the some basic definitions and notations which are

necessary for study tropical toric varieties.

3.1 Polyhedral Geometry

In this section, we will recall the polyhedral geometry since they relate

to affine toric varieties and tropical toric varieties.

Definition 3.1.1. Let R be aring. A right R-module M over R is an abelian
group, usually written additively, and an operation M x R — M (denoted

(m,r) +— mr) such that for all 7, sin R, z, y in M, we have:

17



(i) (x4 y)r=ar+yr.

(i) z(r+s) = xr+zs.

(iii) (xs)r = x(sr).

(iv) zlg = 2 if R has multiplicative identity 1g.

Similarly, we can define a left R-module via an operation R x M — M
denoted (m,r) — rm and satisfy the above conditions. If R is a ring with
identity, then a right R-module is also called a unitary right R-module. If R
is a commutative ring, then a right R-modules are the same as left R-modules
with mr = rm for all m in M, r in R and are called R-modules.

If R is a field, then a R-module M is called a vector space.

Definition 3.1.2. An abelian group F is called a free abelian group if it has

a basis.

Example 3.1.3. The trivial group {0} is the free abelian group on the empty

basis.

Definition 3.1.4. Let R be a ring. Let M be a right module and N be a
left module over R. Let F' be the free abelian group on M x N. Let K be
the subgroup of F' generated by all elements of the forms

(i) (a+0b,¢) — (a,c) — (b, c);

(i) (a,c+d) — (a,c) — (a,d);
18



(iii) (ar,c) — (a,rc),
for all a,b € M; ¢,d € N; r € R. The quotient group F/K is called the
tensor product of M and N, and we write M ®g N or simply M @ N forF'/K.

The element (a,c) in F'/K is denoted by a ® c.

We denote by N ~ Z" the free abelian group and Nz = N ®z R the
associated real vector space; moreover, we denote by M := hom(N,Z) the

dual lattice of N and Mpi = M ®7 R.

Definition 3.1.5. The polyhedron P is the intersection of finitely many

halfspaces in Ng, that is, a set of the form
P={X € Np | AX > b}

where A € (N¥)? and b € R%.
If Ae (NY)? beZ% then P is called a rational polyhedron.

If Ae (NY)? beR? then P is called polyhedron with rational slopes.

Example 3.1.6. Let A = (zl)) i) and b = (;), then

P={XeR’|AX > b} = {(z,y) e R* |z + 2y > 1,3z + 4y > 2}

19



Figure 3.1: rational polyhedron

Definition 3.1.7. For every finite set S C R?, if a set S is not convex set,
the convex hull of S is the smallest convex set containing it, which we denote

it by conv(S), that is,

conv(S) = ﬂ{K CR*| S C K,K is a convex set}

Proposition 3.1.8. Let S be a finite subset of R"™. Then

conv(S) ={ \x1+ -+ ApZim | T1, .. T € Sy N ZO,Z)\Z-:I}

i=1

Proof. For any finite set {z1,...,2,} €S, A >0 with Y ", \; = 1.

We have Mz + -+ 4 An@m = (1 — An) (Zm A ) 4 Ay for Ay <

=1 1-X\m

20



1. Therefore, > ", ix; € conv(S). Conversely, for any finite set Sy =
{z1,.. ., xm} C S, conv(Sy) = {Mx1 + -+ A | ©1, .., T € So, Ni >
0,7, A =1} C conv(S). Soconv(S) = { a1+ +AnZm | {z1, ..., 2m} C
S, A > 0,57 A =1} Hence if S = {zy,...,2,} € R" is a finite set, then

we have conv(S) = {\z1++ -+ A | 21, 20 € S, A 2 0,350 N = 1}

Definition 3.1.9. For every finite set S in a real vector space, the positive

hull or conical hull of S'is denoted by pos(S) and is the set

pos(S) = {Z Aim | {mi}ier € S, A > 0}

i€l
Note that if S = (), then pos(0)) = {0}.

Definition 3.1.10. The Minkowski sum of two sets X and Y in a vector

space, defined by X + Y istheset {z +y |z e X,y e Y}

Definition 3.1.11. A set o is called a polyhedral cone (or simply a cone
later) if

o = pos(S) = {Z Aimy | {m;}ier €S, A >0}

il

where S C Np is finite.

By the Minkowski-Weyl theorem for cones, the cone ¢ is a finitely gen-

erated if and only if 0 = {X € N | AX > 0} where A € (Mg)? and b € R%.
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(i.e. o is a polyhedron). For more details see [28] Section 1.3, [4] Theorem

1.15, and [16] p. 88.

Example 3.1.12. Consider the cone

o =pos{(1,0),(1,1)}

={A\(1,0) + A2(1,1) | A1, Ae > 0}
)=l 1) )= 6))

in R?, then we can see its picture below:

Figure 3.2: the cone o

Definition 3.1.13. Let ¢ be a cone. We have ut = {v € Ny | (u,v) = 0}

for a dual vector v in Mp. Moreover, we define a face 7 of the cone o by

r=o0nNut={vecol(uv) =0}

Definition 3.1.14. Let 7 and o be nonempty polyhedra. 7 is called a facet
of o if 7 is a face of o and dim(7) + 1 = dim(o) (denoted by 7 < o), that is,
a facet 7 is a face of codimension 1.
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Definition 3.1.15. A polyhedral cone ¢ is said a pointed cone if the origin

is a face of 0. Otherwise, the polyhedral cone is called a blunt.

Example 3.1.16. In R, ¢}, = {x € R | © > 0} is a pointed cone, and

Cy={z €R| x>0} is a blunt.

Definition 3.1.17. A cone o is called simplicial if it is generated by a linearly
independent subset of the lattice N, that is, 0 = pos(C') is called simplicial

cone if C' is linearly independent.

Definition 3.1.18. A simplicial cone ¢ is called unimodular if it is generated

by a subset of a basis of the lattice N.

Example 3.1.19. Let N = Z(1,0) & Z(0,1). We consider the cone o =
pos{(1,0),(3,2)} in N. Then {(1,0), (3,2)} is linearly independent, but (2,1)

is not in Zso(1,0) ® Zx(3,2)}. Hence the cone o is simplicial.

Example 3.1.20. Let N = Z(1,0)®Z(0,1). Given the cone o = pos{(1,0),(1,1)}
in N. Then {(1,0),(1,1)} is a linearly independent set, and Z>o(1,0) &
Z>o(1,1)} can generate all of integer vectors in the cone o. Hence the cone

o 1s unimodular.

Definition 3.1.21. The set P = conv(S) = {D_,c; Aimi | {mi}ier € S, A >

0, ;cr Ai = 1} is said a polytope in Ng where S C Ny is finite.
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The P = conv(S) + pos(V') for some finite sets S, V in Ny if and only if
P is a polyhedron, that is, P = {X € Ng | AX > b} where A € (Mg)? and

b € R, For more details see [28] Theorem 1.2 and Section 1.2.

10 1

0 1 1
Example 3.1.22. Let A = 9 1 and b = 6 then

-1 -1 —4

P={(z,y) eR? |z >1,y>1, 20 —y>—6—x—y>—4}
Therefore, 0, V4,..., Vi, er,...,eq, or P are faces of P where V;,...,V, and

ei1,...,ey4 are vertices and edges of P respectively.

Figure 3.3: the face of P

Definition 3.1.23. Let f € Clxy,...,z,), and write f = Zaezgo cox®. The

Newton polytope of f, denoted NP(f) or New(f), is the lattice polytope

New(f) = conv({a € Zxo | co # 0}).
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Figure 3.4: The tropical curve Figure 3.5: The Newton sub-
Trop(f) division of Trop(f)

Example 3.1.24. The tropicalisation of

f:t2~x3—|—x2y—|—xy2+t2~y3+x2+%-xy+y2+x+y+t2

is the tropical curve (as illustrated in Figure 3.4)

Trop(f) =202 01 0yer0y?e2- 9?02 0royo (1) @ y*?
Prdyd2

= max{2 + 3z, 2x + y,x + 2y,2+ 3y, 2z, x +y — 1,2y, x,y,2}

The vertices of the tropical curve are:

(2,0), (1,1), (1,0), (0,2), (0,1), (0,-1), (=1,0), (=1,-1), (—=2,-2)
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The Newton subdivision of the tropical curve Trop(f) is

New(Trop(f)) = conv{(0,0),(1,0),(2,0),(3,0),(0,1),(0,2),

(0,3),(1,1),(1,2),(2,1)}.

We illustrate the Newton subdivision of in Figure 3.5.

Definition 3.1.25. A polyhedral complex A is a collection of polyhedra
such that the following the two conditions are satisfied: if U € A and F is a

face of U, then F' € A; if U,V € A, then UNV is a face of U and V.

The empty set is in the polyhedral complex A, i.e. a polyhedral complex

A contains empty face.

Definition 3.1.26. F' is a polyhedral fan if F'is a polyhedral complex and

each o in F' is a cone.

Note that we consider the fan is collection of non-empty polyhedral cones

in this paper.

Example 3.1.27. Suppose that 7 = pos{(—1,0)}, 7= = pos{(1,1)}, 13 =
pos{(0,—1)}, o1 = pos{(—1,0),(0,—1)}, o9 = pos{(—1,0),(1,1)}, and o3 =
pos{(0,—1),(1,1)} Let F = {(0,0), 71, T2, 73,01,02,03}}. Then (0,0) is the
face of other elements of F' and (0,0) = 71N = 11N73 = ToN73, 1 = 01N 0y
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is the face of o1 and o9, 79 = 09 M o3 is the face of o9 and o3, 73 = 01 N o3 is

the face of o; and o3. Hence F' is a fan.

Figure 3.6: The fan F

Definition 3.1.28. Let I’ be a polyhedral complex. We define the following

two notations:

o F*) ig a collection of k-dimendional polyhedra of F.

o |F|= U U is said the support of F.
UeF

Example 3.1.29. Recall from Example 3.1.27 that

= {017 092,03,T1,T2, 73, (Oa O)}

F(O) = {(O; 0)}7 F(l) = {7-177—2a7—3}7 F(Q) = {0-170-270-3}'
|F| = U U=o0,UoyUosUm U UT3U(0,0).
UeF
Definition 3.1.30. A polyhedral fan F is a rational fan if all cones in F' are

rational polyhedra.
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Definition 3.1.31. A polyhedral fan F' in a vector space Ny is complete if

the support of F' is Ng, i.e. |F| = Ng.

Example 3.1.32. Recall from Example 3.1.27 that F' = {01, 09, 03,71, T2, 73, (0,0) }.

Then |F| = U U=0UoyUosUn U UT3U(0,0) = R?
UeF

Definition 3.1.33. Let o be a pointed rational cone in Ni. The dual cone

o/ ={veMg| (v,u)>0,Vuc o}

Example 3.1.34. Let N = Ze; @ Zey where e; = (1,0) and ey = (0, 1) are
the standard basis vectors, and let ¢ = {0}. Then Ng = N ® R ~ R?, and
M = Hom(N,Z) = ZeY & Zey, thus Mz = M @ R ~ R?. Since v-0 > 0 for

all v in MR, we have

o' ={veMg|(v,0) >0}

= pos{(1,0),(—1,0),(0,1),(0,—1)}.

Definition 3.1.35. Let P be a polytope in Ng. We define the dual polytope

PY :={v e Mg | (u,v) > —1for all u € P}.

Theorem 3.1.36 (Farkas’ Theorem). Let o be a polyhedral cone in N,
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then the dual cone ¢V is a polyhedral cone in Mpg.

Proof. See [24] Corollary 22.3.1, [8] P.11 and [28] § 1.4.

Definition 3.1.37. A rational polyhedral cone is called strongly convex if it
contains non-zero linear subspaces, namely, it does not contain line through

the origin.

Proposition 3.1.38. Let o lie in Ng ~ R"™ be a polyhedral cone. Then the

following conditions are equivalent:

(i) o is strongly convex;

(ii) {0} is a face of o;

(ii}) 0 N (~0) = {0};

(iv) m is the dimension of 0";

(v) o contains no positive-dimensional subspace of Ng.

Lemma 3.1.39 (Separation Lemma). Let A be a fan in Ng, and let oy and
0y be polyhedral cones in A. Let 7 = 01 N oy be a common face of o; and

oy. Then there exists u in oy N oy such that

T:UlﬂuL:UgﬂuL.
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Proposition 3.1.40. Let ¢ be a unimodular cone. Let the set {uy, ..., u,}

be a basis of N. If o = pos{uy, ..., u;}, then we have

v _ v Vo4V v
o' =pos{uy,...,up, £u; 1, ..., Fu,}.

Proof. For all j = 1,...,k. Let u be in 0. By the definition of then cone,
k

suppose that u = Z Aiu; where Ay, ..., A\x > 0. Then we get that
i=1

For j =k +1,...,n, then we have

k
i=1

Conversely, let v be in 0¥, then v =3~ | nju = Zle M+ Dy M -

For j =1,...,k, we have v - u = \; > 0 where u = ijl)\jui is in 0. For
- . m 2V m +,,V m —(_—V i
J=k+1,...,m,since Zj:k+1 nju; = Zj:k+1 nj +Zj:k+1 n; (—uy), vis
- v Vo,V v

in pos{uy,...,ug, £ul ..., Fu;}.

Theorem 3.1.41 (Duality Theorem). If ¢ is a convex polyhedral cone in

Ng, then (¢v)¥ = o.

Proof. This is well known result. For careful information see [12] P.47 and
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[24] Theorem 14.1.
Proposition 3.1.42. Let the set {uy,...,u,} be a basis of N. Let o =

pos{uy, ..., u;} be a unimodular cone in Ny, then (¢v)¥ = 0.

Proof. According to the above Proposition 3.1.40, we have
o’ =pos{uy,...,ul, £uy .. Eul}
since o be a unimodular cone. So we get that
oV ={we€ Nr |<w,v>>0, VYweo'}.

k

Let u belong to a cone o = pos{uy,...,ux}, then u = Z)‘iui’ and so
=1

u-v =\ >0 for some 1.

n

Conversely, let w be in ¢VV, then we write w = Z c;u;. Then
i=1

k n n
W= Zciui + Z chu; + Z c; (—uy).
i—1

i=k+1 i=k+1

Fori=1,...,k,0<w-u/ =¢. Fori=k+1,...,n,0<w-u/ =¢ and

0<w-(—u)=c,sowegetthat ¢, =0fori=k+1,...,n.
Lemma 3.1.43 (Gordon’s Lemma). Let o be a rational convex polyhedral
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cone in N, then S, := ¢V N M is a finitely generated semigroup where M is

a daul lattice of N.

Proof. By the Farkas’ Theorem, the dual cone oV

is a polyhedral cone in
Mg ~ R"™. Let 0¥ = pos{U} where U = {uy,...,u,} is a finite subset of
M. Take K = {> 7" tiu; | 0 < ¢; < 1}, then K is a bounded region of
Mg, and so K is compact. Since M ~ Z", K N Mis finite. We claim that
U U (K N M) generate the semigroup S, = ¢¥ N M. If u is in S,, then we
write © = Z:’;l r;u; where r; is nonnegative real number for all i = 1,... m.
Because r; = |r;]+t; where |r;] which denotes the floor of r; is a nonnegative
integer and 0 < ¢; < lforalli=1,... ,m,u= " |riu;+> i t;u;. Then
Yo tiw; isin K N M. Therefore, u is a nonnegative integer combination of

elements of U U (K N M).

The Gordon’s lemma is well known result. For more information also

see [8], [22] or [28].

Example 3.1.44. Let N=Z(—1,0) & Z(0,—1). Take ¢ = pos{(—1,0)}. If

(1, 29) - (—1,0) = —x1 > 0, then the dual cone

UVI{UGMR|U~(—1,O)ZO}
:pOS{(—l,O),(O,l),(0,—1)}
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So the corresponding semigroup S, = 0¥ N M = Z>o(—1,0) ® Z>((0,1) ®

Z>0(0,—1).

Proposition 3.1.45. Let A be a fan in Ng, and let 7 is a face of o in A,
then

Sr =S¢+ Zzo(—u)
for some —wu in the dual lattice M.

Proposition 3.1.46. Take a fan A in Nr. Let ¢; and o, in A, and let
T = 01 N 0g, then

S, =S, + S,

3.2 Fiber products of affine varieties

In the section, our references are from definitions in [9], [6], [8] and [5].

Given two affine varieties Vi = V(fy,.... fs) and Vo = V(g1,...,9:)
where fi,..., fs are in Clxy,..., 2, and ¢gi,...,g; are in Clyy, ..., y,|, then

we have

‘/l X ‘/2 = V(fla"-afsagla--'agt)-

Let Vi and V5 be algebraic variety in A™ and A™, respectively. A map
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f: Vi = V4 is a morphism of algebraic variety if there is a map f : A" — A™

with f(z) = (fi(x),..., fm(®)), that is, f = f [y,: Vi = V3

Definition 3.2.1. For any subset V' of A", we define the ideal of V' to be
I(V)={feKlz1,...,z,) | f(x) =0 forall x € V'}

Definition 3.2.2. Let X be nonempty set ,and let 7 be a collection of

subsets of X. 7 is a topology on X if it satisfies the following properties:

(1) ® and X are in 7.

(2) If U; is in 7 for all 4 in index I, then U U,isin 7.

el

(3) If Uy,...,U, are in 7, thenﬂUi isin 7.

=1

The members in 7 are called the open sets in X. Moreover, the com-

plements of the open sets is called closed sets in X.

The algebraic varieties are closed sets on A". Therefore, we will show a

topology on A",

Proposition 3.2.3. If .7 is a collection of the algebraic varieties on A", i.e.
T ={V C A" |V is an affine algebraic variety}, then .7 is a topology.
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Proof. To start with, since ) = V(1) and A™ = V(0), § and A™ are in 7.
Next, suppose that Vi = V({f;}ier) and Vo = V({f;}es) where f; and f;
are in K[xq,...,x,] for all i and j. We claim that Vi NVa = V({fi }ierus). A
point p is in V4 NV4 if and only if p is in V({fi}ier) and V({f;};e;) ,which is
filp) =0for all i in I U J, so a point p is in V({ fi }ierus)-

Finally, we only need to prove that V(f1)UV(fy) = V(fif2) where f; and f,
are in K[xy,...,z,]. If p belongs to V(f1) U V(f2), then p belongs to V(fi)
or V(fs), and so fi(p) = 0 and fo(p) = 0. Then fi(p)fa(p) = 0. Hence
p belongs to V(fif2). Conversely, if p belongs to V(f;f2). If p belongs to
V(f1), then we are done, and if not, then fi(p) # 0. Since p belongs to

V(f1f2), that is, fi(p)f(p) = 0, fao(p) = 0. So p belongs to V(f;). Hence p

belongs to V(f1) UV(fa).

We call the above topology 7 the Zariski topology on A™.

Definition 3.2.4. The maximal spectrum mazSpec(R) (or Speem(R)) of a

ring R is the set of all maximal ideals of R, that is,

Speecm(R) = {m C R | m is a maximal ideal of R }.

If we have a ring homomorphism f : R — S, then we might not have
a map maxSpec(S) — maxSpec(R) since f~(m) is not always a maximal
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ideal in R for m is a maximal ideal in S. For example, a ring homomorphism
f:7Z — Q, (0) is a maximal ideal in @, but f~'(0) = (0) is not a maximal

ideal in Z since (0) C (2) C Z.

Definition 3.2.5. The spectrum Spec(R) of a ring R is the set of all prime

ideals of R, that is,

Spec(R) = {p C R | p is a prime ideal of R }.

Proposition 3.2.6. Let f : R — S be a ring homomorphism. If P be a

prime ideal in S, then f~1(P) is a prime ideal in R.

Proof. Assume that P is a prime ideal in S. Let xy belong to f~!(P), then
f(zy) = f(x)f(y) isin P. Since P is a prime ideal, f(z) isin P or f(y) is in
P. Then z is in f~Y(P) or y is in f~!(P). Hence f~'(P) is a prime ideal in

R.

By the above proposition, if a ring homomorphism f : R — S, then
we define a map ¢ : Spec(S) — Spec(R) by ¢(P) = f~'(P), which is a

well-defined.

Definition 3.2.7. Given two sets X and Y over a third set S, that is, the
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mappings of sets f: X — S and g : Y — 9, then the fiber product

X xsYV ={(z,y) e X xY | f(x) = g(y)}.

Let f: X — Sand g : Y — S be two morphisms of schemes. The
fiber product of X and Y is a scheme X Xg Y together with projection
m : X XY — X and my 1 X XY — Y such that whenever we have morphisms
¢ W — X and ¢ : W — Y for any scheme W. There exists a unique

morphism 7 : W — X x Y making this diagram commute

El'ﬂ'

A

XXY —

I' X - X
‘TFQ f‘
Y S

b2

g
e

Definition 3.2.8. Let K be a commutative ring with identity. A ring R is
called a K-algebra if the additive group (R, +) is a unitary K-module, and

k(ab) = (ka)b = a(kb) for all k in K and a, bin R.
Definition 3.2.9. Let V' be an affine variety in A"”. We define the coordinate
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ring of V' to be the quotient of the polynomial ring by the ideal, that is,

For coordinate rings whenever we have a diagram with C-algebra homo-
morphism ¢ : C[V;] — C[W], there should be a unique C-algebra homomor-

phism 7* : C[V; x V5] — C[W] that make this diagram commute

Cw)—4 ]

L

b3 Pr* st

C[Vel—— ClVi x Vi

3.3 Toric Varieties

Definition 3.3.1. Let (K, +, x) be a semifield and let K* = K\ {0, } where
0. is the identity element for the binary operation +. The set (K*)" is called

the n-dimensional algebraic torus over K.

Example 3.3.2. The S' = {z € C* | 2z = 1} ~ C*, so S! is the one-

dimensional algebraic torus over C
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Definition 3.3.3. A one-parameter subgroup of a tours 7' is a morphism

A C* — T which is a group homomorphism.

Remark 3.3.4. The group hom(C*,T) of one-parameter subgroup is a lat-
tice where hom(C*,T) = {\: C* — T | A is a morphism of variety and

a group homomorphism}.

Definition 3.3.5. A character of a tours T is a morphism x : 7' — C* which

is a group homomorphism.

Remark 3.3.6. The character group hom(T,C*) of a torus T is a lattice
where hom(T,C*) = {x : T — C* | x is a morphism of variety and a group

homomorphism}.

In fact, we can show that the following propositions. Let v = (vy,...,v,)
be in Z". Let x and A be in hom((C*)" and hom(C*, (C*)"™) respectively.

Then we have

X (21, .. ) = atay? - xyr, and A°(t) = (7, ... ty,)-

Definition 3.3.7. Let (S,*) be a semigroup and (X,-) be nonempty. A
map S x X — X given by (s,z) — s -z is called an action of S on X if
S1 - (82 - ) = (81 % s2) - & where for all 51,9 in S, and = in X. Moreover, S
acts on X, X is called S-set.
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If S is a monoid (or group) with identity e, then S acts on X if there

exists a map which satisfies the above conditions and e-x = z for all z in X.

Definition 3.3.8. Let X be a S-set. For any x in X, S-x={s-x| g€ S}

is called the S-orbit of z.

Definition 3.3.9. Let o be a cone, and let S, be the corresponding semi-

group. We define the affine toric variety U, corresponding to a cone o by

U, == hom(S,,C)

where hom(S,, C) denotes the semigroup homomorphism S, — C and C is

considered as a semigroup under multiplication.

Example 3.3.10. Let N ~ Z? be a lattice with associated vector space
Nr ~ R?, and let M be a dual lattice of N with associated vector space
Mg ~ R?. Given a cone o = pos{0} in Nr where 0 denotes (0,0), then its
dual cone {0} = pos{(1,0),(—1,0),(0,1),(0,=1)}, then Sy = {0}'NM =

ZZO(L 0)@Z20<_17 O)@ZEO((); 1)@%20(0, —1) Let X(l’o) = I, X(_l’o) = I,

YO = 24 and @Y = z5. Then 1 = 0 = (L0 (=10 — g2, and

1 = x00 = yODNO-D — 2.2, and so x5 = 27" and 24, = x3'. So

C[Siny] = C{O}VNM] = Clay, 27", 23,25 "] =~ Clay, v2, 23, 24/ (21222304 —1).
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Hence we have

Uty = Spec(C[S(oy])
= Spec(Clzy, xfl, T3, xgl])
~ Spec(Clxy, xa, x3, 4]/ (x12092324 — 1))

~ (C*)2

So Uygy is the 2-dimensional algebraic torus over C.

Similarly, given a lattice N ~ Z", then we can also show that Uy is the

n-dimensional algebraic torus over C.

Proposition 3.3.11. Let o be a cone, and let S, be the corresponding

semigroup. Then there is bijective correspondence between hom(S,,C) and

Spec(C[S,]).

Proof. See [5] Proposition 1.3.1.

Remark 3.3.12. A toric variety is an irreducible variety X containing an
algebraic torus T as a Zariski open subset of X such that these exists an

open T-orbit of X isomorphic to T

In C (or field), the semigroup homomorphism hom(S,, C) is isomorphic
to Spec(C|[S,]). Moreover, if ¢ is in the algebraic torus 7" and f is in the
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semigroup algebra C[S,], then ¢ - f lies in C[S,] is defined by s — f(t71 - s)

for all sin T. (See [5] chapter 1 and chapter 5)

Example 3.3.13. Let X be the multiplicative group of nonzero complex
numbers C* and let T" be the a 1-dimensional algebraic torus C*. Since {0}
is an affine algebraic variety, 7' = C\{0} is a Zariski open subset of X.
Define a map f : T x X — X given by (t,x) — t-x. Take z = 1 € C*,

C*-1={t-1|te C*} is an open C*-orbit of = and is isomorphic to C*.

Example 3.3.14. Let X be the multiplicative group of nonzero complex
numbers P™ and let 7" be the a n-dimensional algebraic torus (C*)". Since
{0} is an affine algebraic variety, T" = P"\V (zox; - - - z,) is a Zariski open
subset of X. Define a map f : T x X — X given by (¢t,z) — t-2z. Take
x=11,---,1] € P" then (C*)" -z ={[1:t1: - :t,] | (t1,--- ,t,) € (C*)"}

is an open (C*)"-orbit of x and is isomorphic to (C*)™.

Proposition 3.3.15. Let o be a polyhedral cone, and let 7 be a face of o,

then the map U, — U, embeds U, as a principal open subset of U,,.

Remark 3.3.16. Because {0} is a face of all polyhedral cone o, the torus

Ujoy is a principal open subset of all U.

Let A be a fan, and let o7 and o9 be in A. Then o7 N oy is a face
of 0y and o in A. Moreover, U,, U,, are the corresponding affine toric
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varieties. According to Proposition 3.3.15, we have two embedding maps
hi: Usinoy = Uy, and hs : Uyyne, — Uy, We define an equivalence relation
by A ~ B where A and B are in U,, and U,, respectively if and only if

hio hy'(B) = A. Note that we have the following commutative diagram:

c ho
Ualﬂcrz UO’2

hloh_1 /
h 2

hoohy *

Us,

Definition 3.3.17. Given a fan A in Ng. We define the toric variety by the

s {10) /.

that is the disjoint union of the affine toric varieties, and ~ is the above

quotient space

equivalence relation.

Next, the following example of the toric variety is over C. Albeit we
will discuss the same case in the Example 4.3.2, it is over tropical semifield
T. And we will know the difference between toric varieties and tropical toric

varieties later.

Example 3.3.18. Given the lattice N ~ Z2, then Ng = N @ R ~ R?, the

dual lattice M ~ Z? and My = M ® R. Let the fan A in Ni. Suppose that
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Figure 3.7: the fan A Figure 3.8: the dual cones oy, 0y, 0y

the fan A has

01 = pOS{(l, 0)’ (07 1)}7 02 = pOS{(—l, _1)’ (07 1)}7 03 = pOS{(l, 0): (_17 _1)}7

together with

T — 01 n 09 — pOS{(O, 1)}, To — 02 N O3 = pOS{(—l, —1)},

73 = o3 N oy = pos{(1,0)}, and the origin.

Then the dual cones

0-1/ = pOS{(l, 0)7 (07 1)}7 0-%/ = pOS{(—l, 0)7 (_17 1)}7 Ui\i/ = pOS{(l, _1)’ (0’ _1)}'
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Moreover, the corresponding semigroups

SU1 = O-i/ nM = Z20<17 O) 52 ZZO(07 1)?

50—2 - O';/ NM= Zzo(—l,O) @ Zzo(—l, 1),

503 = 0':\;/ NM= Zzo(l, —]_> D ZZO(O’ —]_),

together with

Sri = 8oy + Soy = Z>0(1,0) ® Z>o(—1,0) & Z»0(0,1),

STQ — SUQ + 80'3 \— ZZO(L —1) EB ZZO(_L 1) EB ZZO(_L —1),

57-3 - 5(73 + So'l — Zzo(l, 0) @ ZZ()(O? 1) @ Zzo(o, —1>,

S{O} = ZZO(L 0) S ZZO(O; 1) S¥ ZZO(_L 0) D Zzo(o, —1)

—1,0)

Let 21 = x0, 2o == xC1O 25 = xOU and 24, == x® Y. Then

r122 = 1 and z3x4 = 1, and we have

C[Sgl] = C[:El,dig], C[SUQ] = C[Z’Q,ZEQQZg], C[Sog] = C[.Tll’4,$4],

C[S, | = Clzy, 9, z3], C[S,,] = Clr124, 273, T224], and C[S,,| = C[zq, x3, 24].

45



Therefore, the affine toric variety

Uy, = hom(S,,, C) ~ SpecC|S,,| = SpecClzy, x3] ~ C x C,

Us, = hom(S,,,C) ~ SpecC|S,,| = SpecC|xy, xoz3] >~ C x C,

Usy, = hom(S,,, C) ~ SpecC|S,,| = SpecClr1x4, 24] ~ C x C,

together with

U, = hom(S;,,C)=C*x C, U, = hom(S,,,C) =C* x C,

UT3 =1 hom(STs,C) =C" x C, U{O} = hom(S{O}, C) =C" x C".

The gluing of the affine toric varieties U,, and U,, along their common
subset U,, gives CIP? with coordinates (2 : 21 : 22) where 7; = 21/ and
x3 = 29/29. The gluing of the affine toric varieties U,, and U,, along their
common subset U,, gives CP? with coordinates (zq : 21 : 22) where 2925 =
21/zp and w9 = 29/25. The gluing of the affine toric varieties U,, and U,,
along their common subset U,, gives CP? with coordinates (20 + 21 : 22)

where x3 = 21 /29 and 1 = 23/ 2.
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The following commutative diagram:

Uyy <— U —> Uy,

Hence the gluing of these two gives the toric variety

XA (T) = (H Uo) /N — CP2,

ogEA

Theorem 3.3.19 (Hironaka’s Theorem). Let V' be a quasi-projective vari-
ety. Then there exists a smooth quasi-projective variety X and a projective
birational morphism 7 : X — V. Furthermore, 7 may be assumed to be an
isomorphism on the smooth locus of V', and if V' is a projective variety, then

so is X.
Proof. See [25] p.106.

Let X = {(z,[p]) € A" x P" ! | z € [p]} in A" x P""!. The blow — up

of A™ at a point [p] is the map 7 : X — A" via (z, [p]) — .
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3.4 Fano varieties

In this section, we will introduce and outline the Fano variety and Fano

polytope. For more information see [5], [22], [7], [8] and [14].

Definition 3.4.1. For all r in Z, we define the Hirzebruch surface

H, = {([xo: 1], [yo: y1 : yo]) € CP! x CP? | z0yo = iy}

Since H, is isomorphic to H_, for all r in Z, we sometimes assume Z.

Theorem 3.4.2. Let P ba a polytope in Ng. If all of facets of P are the

convex hull of a basis of N if and only if Xp is a smooth Fano variety.

Proof. See [14] Proposition 3.6.7 and [7] Lemma 8.5.

The Fano varieties in two-dimension are also called a del Pezzo surface.

Theorem 3.4.3. There exist five distinct toric Fano varieties of two-dimension
up to isomorphism,

1. CP?,

2. CP' x CP!,

3. the equivariant blowing-up of CP? at one point (i.e. the Hirzebruch

surface Hy),
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4. the equivariant blowing-up of CPP? at two point,

5. the equivariant blowing-up of CP? at three point.

Proof. See [22] Propsition 2.21.
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Chapter 4

Tropical Toric Variety

4.1 K(G,R,M)

Definition 4.1.1. For all real number x, we define

" = maz(z,0),

x~ = maz(—=z,0),

and called positive part and negative part of x, respectively.
Remark 4.1.2. The " and 2~ are non-negative and x = 2+ — 2.

Definition 4.1.3. For all extended real-valued function f, the positive part
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of f is defined by f*(z) := max{f(z),0}, and the negaive part of f is defined

by f~(z) := max{—f(x),0}. So we have f = f* — f~.

Remark 4.1.4. Let f := (f1,- -, fu) € R then f* = (fi,--, f.),

f_:(fl_>"'afr?)’andf:f—i__f_'

Proposition 4.1.5. Let f := (f1, -+, fn) € R>" and z := (21, ,z,) €

R™, then the equations f -z = 0if and only if f* -2 = f~ - x.

Proof. Suppose that f -z = 0 where f := (f1,--+,f,) € R™" and z :=
(x1,-+ ,x,) € R". Then (fi,-+-, fn) : (1, - ,x,) = 0 implies f; x z1 +
oo fo X @, = 0. Since f; = fit — f; foralli = 1,--- n, we have (f;" —
i) xzi+-+ (f,F = f7) x @, = 0. Therefore, fi* X 1+ + fF x 2, =
fi Xz +---+ f X x, Hence ft-z=f"-x.

Conversely, assume that f* -2 = f= .2 where f*,f~ € R and z =
(z1,-++ , @) € R" then fi" Xz + -4 fif X2 = f7 X@1 4+ f7 Xz
So we have (fi" — fi) xax1+---+ (f;7 = f7) X 2, = 0. Hence f -z = 0 since

fi=ftr—f foralli=1,--- nand z:= (21, -+ ,2,) € R™

Definition 4.1.6. Let S be a semigroup in Z" and let G = {g1, -, gm}
be a finite set of generators of S. Let R = {ry,--- ,rx} C Z™ generate
the integer relation between a set of G, that is, Spanz(R) = {z € Z™ |

G121+ -+ + gmzm = 0}. Let M be another commutative semigroup. We
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define

K(G,R,M) = {xEM‘G||T+~x:r_-x‘v’T€R}

We will discuss about that r - = 0 is different from T -2z =r~ -z in

the tropical semifield T.

Example 4.1.7. Let S C Z? and let G = {(1,1),(4,4)} be the generating

set of S. Then |G| = 2, and we have (1,1)z; + (4,4)29 = 0 for all 2y, 29 € Z.
This implies R = {(—4,1)} and Spanz(R) = {(21,22) € Z* | 21 + 42 = 0}

Let M = T and let z = (z1,25) € T?2. Then r -z = Op where Oy is

the tropical additive identity. This implies (=4 ® 21) & (1 ® 23) = O, so
max{—4+ x1,1 + 22} = —oo. Hence (z,25) = (—o00, —00).

However, r*-z = (0,1)- (z1,22) = (0021) & (1 ©22) = max{0+ 1,1+ x2}.
Similarly r~-z = maz{4+xy,04+x2}. So{(z1,29) € T? |r* -z =7r" -z Vr € R} =
{=00, 21 +3 =x2}. Then K(G,R,T) = {—o00, 21+ 3 = 2}

Hence r - x = 0 is different from »* -z =r~ -z in T.

Proposition 4.1.8. Given G = {¢1,...,9m}. Let R = {ry,---,r} C
7™ Let M be a tropical semifield T. Suppose that K = K(G,R,T) =
{x eT™|rt -z =1r" -2 Vre R}. Wedefine two operations @®g : K x K —
Kand®@g :TxK —>Kbyrz@®gy=(x1DY1,--,Tm D Ym) and t Qg © =

(tOxy,...,tOxy,), respectively. Then (K, G, ®k) is a tropical vector space.
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Proof. Let z = (x1,...,2m), ¥y = (Y1, ,Ym), and v = (v1,...,0,) be in
K, and let t, t;, and t3 be in T. Given r = (21,...,2y) is in R. Then
rt.x =r"-zand r* -y = r~ -y. We claim that K is closed under an

operations @g.

rt e (x@ry)= (2, ., 20) (21 DY, T DY)
= (3 © (@ ON) & B (2, © (T DY)
= (& + max{z1,y1}) & - & (2, + max{Tm, Ym})
=max{z] +21,2] + W} @ @ max{z, +Tm, 2} + Ym}
= ((2{ ©21) ® (2 O Y1) & @ (2, © Tm) @ (2, O Y))
= (s 03) &+ B (2, O 7)) B ((2f QY1) ® -+ D (2, © Ym))
(since (T, @) is a commutative monoid.)

=((zf, 0, 2wy )@ (25, 2h) (s Ym)

=((z1s- vzm) (@, xm) B (21 2m) - (W1, ooy Ym))
=((;1 1) B+ B (2, 0m)) & ((21 O Y1) B+ B (2, O Ym))
=((;1 1) B (31 Oy1)) & & (2, © Tm) B (25, © Yim))

(since (T, @) is a commutative monoid.)
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=max{z; +x1,2; + 1} D - ©max{z, + Tm, 2, + Ym}
= (71 T max{z,y1}) B B (2, + max{wm, ym})

=z O@maen)d - &z, 0 (Tn S yn))

= (21, 2) (@1 DYy Ty DY)

:r’-(:n@Ky)

Hence x $k y is in K.

We claim that K is closed under an operations ®g.

rt o (t@kx)= (2., 28)  (tOx,. .t O Ty)
=z otor)® (= 0tOr,))
=((z70t)Ox) @ ®((5, Ot) © xy,) (since (T, ®) satisfies associative.)
=((te)on)® @ ((tez)®a,) (since (T \ {01}, ®) is abelian.)
=tO(z Ox))® DO (2 O 1))
=tO((2f Oz)® - B (2 ©x,,)) (since (T, ®,®) is a semifield.)
=to " 1)
—to @ 1)
=10 ((2f O21) B @ (2, O 1))

=tz O11))d--- B (tO (2, ®xy)) (since (T, ®,®) is a semifield.)
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=((tez)0x)® & (tO®2,) ®xy) (since (T \ {Or},®) is abelian.)

=((z1 00) Q1) B B ((2, OF) O )

=2 O{tO))® - ® (2, ®(t®xy)) (since (T,®) satisfies associative.)
() (@ T, O T)

=r - (t®kx)

Hence t @k x is in K.

TBk (YBKV) =T Bk (1 D V1, -+, Y D Upn)
= (1B (W BV1)s- s Ton © (Y B Uim))
= ((x1 @ Y1) B V1) oy (T D Ym) B V)
= (1D Y1, Tin P Ym) Px v

= (r®Kry) Bk v
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(t1®t2)®[(l‘: ((t1®t2)®$1,,(t1®t2)®l’m)
=t Ot20x1),. .., t1(Ots © 1))
=t Rk (L2 O 1,...,t2 © Tp,)

=1 QK (t2 @k )

(tl@t2)®]{$:((tl@tg)QZEl,...,(tlEBtz)@xm)
=(Lox)Bt0x1), ..., (L O Tn) © (t2 © Tm))
= (11 @ @1, ., 11 O Tpy) Ok (L2 O Ta;.- ., 11 © Tpy)

= (t1 ®k =) Dk (t2 Rk )

LRk (T®kY) =tk (1D Y1, -« s Ten DY)
=t DY), ..., t O (T © Ym))
=((tez)@tOy), O Tm) ® (tOYn))
=(tOT,.. 02y Pk tO Y1, .., t D Ynm)

= (t @k x) Bk (t Ok Y)

Hence (K, @, ®x) is a tropical vector space.

Proposition 4.1.9. If M is a abelian group, then K (G, R, M) is a abelian
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group.

Proof. Let M be an abelian group with an operation * : M x M — M
by *(a,b) = a *b. Then MI%l is also an abelian group. Because G is finite
set, so we can consider |G| = k. We want to show that K(G,R, M) is a
subgroup of M*. Let x = (z1,...,2%) and y = (y1,...,y) in K(G, R, M).
We claim that z xy~' = (zy*y;t, . 2 %y, ') in K(G, R, M) where y~! is
the inverse for 3. Since M is an abelian group, we have z; * y; ' in M for all
i=1,...,k thus x xy~Yin M*. Let r = (21,...,z) in SpangR. Since M is
an abelian, M is a Z-module, thus (z;" - (z; * y; 1)) = ((z" - ;) * (" -y 1))
and (z; - (z*y; D) = (2 - @) * (2, -y, 1)) forall i = 1,... k. Moreover,

r* .z =r"-zand rt -yt =" .yl because x = (v1,...,7;) and y =

(y1,---,yx) in K(G, R, M). So we have
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Hence we get z xy~' in K(G, R, M), i.e. K(G, R, M) is a group.
Next we claim that K (G, R, M) is an abelian. Suppose that x = (z1,...,z})
and y = (y1,...,yx) in K(G, R, M). Since M is an abelian, x; x y; = y; * x;

forall i =1,... k. Then

x*y:($17...,xk)*(y17"'7yk)

:(ajl*yl?"'axk*yk)
= (Y1 %21, ., Yg * Tp)

Hence K (G, R, M) is an abelian group.

By the above proposition, K(G, R, T \ {—oc}) is an abelian group since

(T \ {—o0},®) is an abelian group.
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Example 4.1.10. Let S C Z? and let G = {(1,2), (2,4)} be the generating
set of S. Then |G| = 2, and we have (1,2)z; + (2,4)2z2 = 0 for all 2y, 29 € Z.
This implies R = {r = (-2,1)}. Sor™ = (0,1) and r~ = (2,0).

Given an abelian group M = (Zy4, +). Let x = (21, 29) € Ziy X Zy. I rT -z =
r~ - x, then xo = 221, and so K(G, R, Z4) = {(x1,%2) € Zy X Zy | xo = 11}
is subset of Z, X Z4.

We claim that K(G, R,Z,4) is a subgroup of Z3. Suppose that (z,z) and
(y1,y2) arein K (G, R, Zy), then x5 = 2z and yo = 2y;. Then 2(z1+(—11)) =
221 + 2(—y1) = 221 + (—2y1) = 22 + (—y2) where (—y1, —y2) is the inverse
element of (y1,v2), s0 (z1 + (—v1), 22 + (—y2)) is in K(G, R, Z,).

Since z; +y; = yi +x; for all t = 1,2, (w1, 22) + (y1,92) = (21 + 1, 72+ 42) =
(1 + 21,92 + 22) = (y1,42) + (21, 22)

Hence K(G, R,Z,) is abelian group.

Proposition 4.1.11. If M is a ring, then K(G, R, M) is a M-module.

Proof. Suppose that M is a ring with binary operation *, together with
a second binary operation ®. Because (M, , ®) is a ring, so (M, *) is an
abelian group, thus K (G, R, M) is also an abelian group.

Define a operation & : K(G,R,M) x M — K(G,R,M) viaz 6 m = (11 ®
m,...,xx @ m). To check that it is well-defined. Suppose that r is in R
and |G| = k. Let m,n be in M and let z = (x1,...,2%),y = (y1,-..,Yx) in
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K(G,R,M). Then r* -z =1r"-z.

rt(zem)=(,...,25) (11 @m,...,x,@m)
_ +
=27 @@ @m)*--- %z & (ry@m)

=z @z)@m*--- % (2 @) @m

Soz©misin K(G,R, M).
Suppose that z = y (ie. z; = y; for all i« = 1,...,k) and m = n, then
rom=(r1@m,...,xy@m) = (y1 ®n,...,y, ®n) =y ©n. Hence it is

well-defined.

(xxy)om=(x1*xy1,..., T *xYp) OM
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=((z1xy1) @m, ..., (Tk *yr) @ M)
=(x1®@m,...,x,@m)* (y1 @m, ...,y @ M)

= (zom)x(yom)

xS (mx*xn)=(x1,...,24) S (mx*n)
=(x1® (mxn),...,x, @ (m=*n))
= ((z1 ®@m) * (r1 ®n),...,(vr ® M) * (v ®N))
= (T ®@m,. .. wk @ 1) * (21 @1, ..., T @ )

=(xom)*(xon)

(xem)on=(x;@m,...,x, @m)OSn
:((x1®m)®n,...,(:ﬂk®TrL)®n)
=(r1@(Mmen),...,r; @ (Mmn))

=26 (m®n)

If M has an identity 1,;, that is m ® 1; = m for all m € M. Then

O ly=(1 @1y, ..., 2, ® 1y) = (21,...,78) = .
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Remark 4.1.12. If M is a field, then K (G, R, M) is a vector space.

Example 4.1.13. Let M = GF(4) be a Galois field. Let S C Z? and let
G ={(1,2),(4,8)} be the generating set of S. Then |G| = 2, and we have
(1,2)z1 + (4,8)2z2 = 0 for all 21,29 € Z. This implies R = {r = (—4,1)}. So
r* =(0,1) and r~ = (4,0). If r* -2 =7~ -z where z = (21, 72) is in GF(4)?,
then x5 = 4z, = 0, and so K(G,R,GF(4)) = {(z1,72) € GF(4)? | x5 =0}
is a subset of GF(4)2. We claim that K(G, R,GF(4)) is a vector space, in
fact, we just need to show that K(G, R, GF(4)) is a subspace of GF(4)?. To
start with, it is clearly that (0,0) is in K (G, R, GF(4)). Next, suppose that
xr = (z1,2) and y = (y1,y2) are in K(G, R, GF(4)), then o = 0 and y, = 0,
then xo4y, = 0, and so z+y is in K(G, R,GF(4)). Finally, let ¢ be in GF'(4),
and let © = (21, 22) be in K(G, R, GF(4)), then x5 = 0 and cx = (cxy, ca),
then cxs = 0, and so cx is in K(G, R, GF(4)). Hence K(G,R,GF(4)) is a

subspace of GF(4)%.

Note that the Galois field GF'(4) is isomorphic to GF(Q)/(Iz fr1)

in fact GF(2) ~ Z, since GF(p) ~ Z, for all prime p.

Theorem 4.1.14. Let S be a finitely generated semigroup on Z". Let
G = {g1,- -, g1} be a set of generaters with relations generated by R =
{r1, - ,rx}. Let M be an additive semigroup. Then there is a bijection
between hom(S, M) and K(G, R, M).
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Proof. We define a map ¢ : hom(S, M) — K(G, R, M). Define a function
f:S— Mby f(g;) = x;. We claim that f is well-defined. Suppose that
5 = 22:1 a;g; and t = ZZ 1big; are in S. Let s = t. If a; = b; for all

1=1,...,[, then

l l
= Z ;T = Z biw; = f

i=1 i=1

If a; =b; + z for alli=1,... 1, where z1, ...,z are in Spang(R). Then

l l l
=Y awi=> (bi+z)w beﬂrzzm > b = f(1)
=1

151 =1

We claim that f is in hom(S, M), i.e. to show that f is a semigroup ho-
momorphism. Let s and ¢ are in S, then s = 22:1 a;g; and t = Zl 1 bigi.
So s+t =" (a+b)g. This implies f(s+t) = S\, (a; +b)x; =
S @i+ Y b = f(s) 4 f(t). Hence f is in hom(S, M).

Since R = {ry,--- ,ry} € Z™ generates the integer relation between a set of
G, for any r = (z1,...,2) in R, then Zz L2 g = Zi 1 % 9i- DBecause
fis in hom(S, M), so 1+ - (zy,...,2) = So_ zfw = S 2 flg) =
F(im 2 9:) = [y 2 90) = iy 2 flgi) = (21, ). So (w1, m)
is in K (G, R, M).

Define a function ¢ : K(G, R, M) — hom(S, M) by i(z) = f for all z in
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K(G,R,M). To check that ¢ is surjective, and 1 is injective, i.e. ¢ o ¥

identity function.

Proposition 4.1.15. Let S be a finitely generated semigroup on Z". Let
G = {g1,- -, g1} be a set of generaters with relations generated by R =
{r1,---,7rx}. Then there are bijective between Spec(C[S]), hom(S,C) and

K(G,R,C).

Proof. The correspondence between Spec(C[S,]) and hom(S,C) is imme-
diate from Proposition 3.3.11. The correspondence between hom(S,C) and

K(G, R, C) is immediate from the Theorem 4.1.14.

Theorem 4.1.16. Let S be a finitely generated semigroup on Z". Let
G=A{q, - ,q}and H = {hy,:-- ,hq} be the different sets of the generators
of S with relations generated by R = {ry,--- ,rgtand P = {p1, - ,pm}, re-

spectively. Then there is a linear isomorphism ¢ : K(G, R,R) — K(H, P,R).

Proof. Since G = {g1,--- ,g9} and H = {hy,--- , hq} are the different sets
of the generators of S, let g; = E;.lzl Aijh; with nonnegative integer \;; for
alle =1,...,1, and let h; = 22:1 (i9; With nonnegative integer pi;; for all
j=1,...,d. Since hom(S,R) is in bijection with K (G, R,R), let z; = f(g;)
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for all i = 1,...,1 where f is in hom(S,R). Then Y \_ zta; = 32\ z7a;

for all (21,..., %) is in SpanzR since (x1,...,2;) is in K(G, R, R). Let y; =

Zizl piix; for all j =1,...,d. We claim that

d d
D tui=) ty;
= p

for all (t1, ..., tq) is in Spang P = {(t;; ... tg) € Z4| 3¢ tihy = S tThs)

j=1 J=17J

Because we have h; = 22:1 (jig; with nonnegative integer p;; for all j =

1,...,d, so this implies

d d !
Dtk =D 5 wiig)
j=1 j=1 =1
d 1
& Z(Z tj_p“ji)gi

=1 4=1

= Z(Z t5 i) i

j=1 i=1

d
= Zt;hj.
j=1

Thus

d d l
PIUEDIAYIITED
j=1 j=1 i=1

d l
=> O thu)e

j=1 i=1
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= Z(Z £y Wyi)T;

j=1 i=1

d
= Z t Y-
j=1

Define a function ¢ : K(G, R,R) — K(H, P,R) viap(z1,...,2;) = (y1,---,Ya) =
(Zizl JTRTH Zli=1 taixi). Then the function is well-defined by the above

discussion.

I I : -
Because Y., p1;%is. .., and >, piq;x; are linear , ¢ is linear map.

Example 4.1.17. Let G = {(1,1),(4,4)} and S = {c¢(1,1) | ¢ € Z>¢}. By
example 4.1.7, we have R = {(=4,1)}. Thus, K(G,R,R) = {(z1,22) €
R? | xg = 4x}. If H = {(1,1)}, then SpanzP = {x € Z | =T - (1,1) =

x~ - (1,1)} = {0}, this implies P =. So we have
KH,PR)={yeR|a"-y=2"-y,x € P} =R.

Then we can obtain a linear isomorphism ¢ : K (G, R,R) — K(H, P,R) via
d(xq,4z1) = 1.

Example 4.1.18. Let G = {(1,1),(4,4)} and S = {c(1,1) | ¢ € Z>p}. By
example 4.1.7, we have R = {(—4,1)}. Thus, K(G, R,R) = {(z1,72) € R? |
o = 4m}. If H = {(5,0),(2,1),(1,—2)}, then SpanzP = {(z1,22,23) €
73 | 21(5, 1) +22(2, 1) +z3(1, =2) = 0} = {(21, 29, 73) € Z3 | 9 = =211, 73 =
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—x1}, thus S = {(1,—-2,—1}. So we have

K(H, P, IR,) = {(371,1’2,563) € RS ’ (1,0,0) . (;Ul,l’g,xg) = (0,2, 1) . <$1,$2,I3)}

= {(z1, 19, 73) € R® | 21 = 225 + 23},

Then the function ¢ : K(G,R,R) — K(H,P,R) via ¢(x1,22) = (x1 +

29, X9, 1) i a linear isomophism.

4.2 'Tropical Toric Variety

Definition 4.2.1. Let T be a tropical semifield. Let o be a rational poly-
hedral cone with the semigroup S,. Then the affine toric variety is U, =

hom(Sy, T) where hom(S,,T) is the semigroup homomorphisms S, — T.

Note that we set T* = T\ {—o0}.

Example 4.2.2. Let N ~ 7?2 be a lattice with associated vector space
Nr ~ R?, and let M be a dual lattice of N with associated vector space
Mg ~ R?. Given a cone 0 = pos{0} in Ng, then its dual cone {0}V =
pos{(1,0),(—1,0),(0,1),(0,—1)}, then Sgoy = {0}'NM = Z>0(1,0)BZ>o(—1,0)®
Z>0(0,1) ® Z>o(0,—1). Because Uy = hom(Soy, T). Define a homomor-
phism f : Sgpy — T by f(1,0) = z1, f(=1,0) = x, f(0,1) = w3, and
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f(0,—1) = x4. Then 21 + 22 = 0 and x3 + x4 = 0, and so xy, xs, w3, and
x4 don’t equal —oo. So Uggy = hom(Sypy, T) ~ (T*)?. Hence (T*)? is the

2-dimensional algebraic torus over T.

Example 4.2.3. Let 0 = pos{(0,—1)} in Ng ~ R? then the dual cone
oV = pos{(1,0),(—1,0),(0,—1)}, and the corresponding semigroup S, =
Z50(1,0) ® Z>o(—1,0) ® Z>¢(0,—1). Let f be in hom(S,, T). Suppose
that f(1,0) = z1, f(—=1,0) = a3, and f(0,—1) = a3, then 0 = f(0,0) =
£(0,1) + f(0,=1) = f(0,1) ® f(0,—1) = x; ® x3 = 1 + x2. Hence the

corresponding affine toric variety is U, = hom(S,, T) = R x R.

Proposition 4.2.4. If 7 C o is a face of a cone o, then we obtain the

embedding hom(S,,T) = U, — U, = hom(S,, T).

Proof. Because 7 C ¢ is a face of a cone o, so ¢" is a subset of 7V. Since
Se =0V N M is a subset of S, = 7Y N M, we have the embedding S, < S,.
Because U, = hom(S,,T) and U, = hom(S,,T), so hom(S,,T) = U, —

U, = hom(S,, T). Note that we have the following commutative diagram:

S ST
foh

Definition 4.2.5. Let F' be a rational fan. Then the tropical toric variety
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Xp(T) is defined as the quotient

Xp(T) =[] Us/~

ocEF

Let 7 and o be in F. Suppose that A and B are in U, and U, respectively.
Since T No is a face of 7 and o (because F' is a fan), we have two embedding
hi :U;ng — Uy and hy : Usny < U,. A ~ B if and only if hy o h;l(B) = A.

Note that we have the following commutative diagram:

h
UTﬁU $ Uo

ml
h10h2_1

U,

Example 4.2.6. Let F' = {{0} = 09, Rsp = pos(1l) = 01} be in Ng ~
R. The dual cone 6f = {v € R | v-0 > 0} = R. So the semigroup
See = 0 MM = Z>o(1) ® Zso(—1), and thus the affine toric variety U,, =

hom(Ss,, T) = R.

The dual cone 0y = {v € R|v-u > 0,Yu € 01} = pos{1} ~ Rs¢. So
the semigroup S,, = oy N M = Z>¢. Since we take f(0) =0 and f(1) = 24

where f is in hom(S,,, T), the affine toric variety U,, = hom(S,,,T) ~ T.

Hence Xp(T) = (Uy, [1Us,)/~= (R[] T)/~=T
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Definition 4.2.7. Let Xz(T) be a tropical toric variety. A point p is said
to be regular or smooth in X (T) if there is a unimodular cone o in F' such
that p is in U,. A tropical toric variety Xz (T) is called regular or smooth if
all points of X (T) are regular or smooth. A tropical toric variety Xg(T) is

called singular if Xz(T) is not regular.

Definition 4.2.8. Let F' be fan in Nr. A set A is called a subfan of F'if A

is a subset of F' and is also a fan.

Definition 4.2.9. Let the lattice N = Ze; & -+ & Ze,, and let another
lattice N' = Zey @ - - - ® Ze,,. Let F be a fan in Ng, and let A be another
fan in N’. Let ¢ : Ng — N be a linear map such that ¢(N) C N’ and
there is a cone ¢’ in A containing ¢(o) for all cone o in F. Then the map

¢ : F — A is said a map of fans.

Theorem 4.2.10. Let N ~ Z" and N’ ~ Z™ be two different lattice, and
let M = hom(N,Z) and M' = hom(N',Z) be the dual lattice. Let F' be a
fan in Ny and let A be another fan in Ny. Let ¢ : FF — A be a map of fans.

Then ¢ extends to a continuous map ¢ : Xp(T) — XA (T).

Proof. Since ¢ : F' — A is a map of fans, there is a cone ¢’ in A such that
¢(0) C o'. Let u bein S,.. Then u is in hom(N',Z) and is in o'V, and thus

we have the map u : N' — Z via u(n') =< u,n’ >. Since ¢ : F' - Ais a
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map of fans, ¢(N) C N'—=7Z. Let p: N — Z via p(n) =< u, p(n) >,
then p is in hom(N,Z). Since ¢(o) is a subset of ¢/, ¢(n) is in ¢’ for all n in
o. Since u is in 0V, < u,¢(n) >> 0, and this implies p is in ¢”. So p is in
Y Nhom(N,Z) = S,. Therefore, we obtain a map S,, — S, and thus have

a map U, — U,. And we have the following commutative diagram:

Usy <= Usinoy, — U,

g

Ugi < Ugllmgé — Ugé
Hence Xp(T) — Xa(T).

Definition 4.2.11. For all r in Z, we define the tropical Hirzebruch surface

H, to be

TH, = {([xo: z1],[yo : y1 : ya]) € TP x TP? | rzo + yo = rxy + 1 }-

For more information on tropical Hirzebruch surfaces, see [3] § 2.
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Figure 4.2: the polytope P
Figure 4.1: the fan A

4.3 Smooth two-dimensional tropical toric Fano

varieties

In this section, we know that there are only five smooth Fano polytopes
in R? up to the action of GL(2,Z), so I will calculate these cases of smooth

two-dimensional tropical toric Fano varieties.

Example 4.3.1. Given the lattice N = Z(1,0) & Z(0,1) ~ Z?, then Ny =

N ® R ~ R?, the dual lattice M ~ Z? and My = M ® R.

Let the fan A in Ni. Suppose that the fan A (the figure 4.1 ) has

o1 = pos{(1,0),(0,1)}, o2 = pos{(—1,0),(0,1)},

o3 = pos{(—1,0),(0,—-1)}, o4 = pos{(1,0),(0,—1)},
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together with

T = 01 N 09 — pOS{(O, 1)}, To — 02 N O3 = pOS{(-l,O)},

73 =o03Noy = pos{(0,—1)}, 74 = o4 Noy = pos{(1,0)},

and the origin. Then the dual cones

O-Y :pOS{(l,O),(O,l)}, 02v :pOS{(—l,O),(O,l)}7

02\3/ :p08{<—1’0)’(07_1)}’ 0-1\1/ :p08{<1,0),(0,—1)}.

Moreover, the corresponding semigroups

Sal = 0'1/ N M = Zzo(l, O) &) Zzo(o, ].),

SUQ = 0;/ NM= ZZQ(_l,O) b Zzo(o, 1),

503 == O':\g/ NM= Zzo(—l,O) ) Zzo(o, —1),

SU4 = O'Z NM = ZZO(L 0) D ZZO(()? —1),
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together with

Sq—l - So'l + SCTZ = ZZ()(l’ O) EB Zzo(—l, O) EB Zzo(O, 1),

ST2 = SUz + SUS = ZZO(Ov 1) ©® ZZO((]? _1) ® ZZU(_17 0)7

87—3 - 503 + 804 - Zzo(]., 0) EB ZZU(_L 0) EB Z20(07 —1)7

Sty = Soy + g1 = 220(0,1) & Z30(0, —1) & Zxo(1,0),

S{O} — Zzo(l, 0) EB ZZO((]’ ].) @ Zzo(—l, 0) @ ZZO(O’ —1)

Let f; be in U,, = hom(S,,, T) for all i = 1,2, 3,4, then we have some
maps

f1:8, — T via fi(1,0) = z and f,(0,1) = v,

fa: Sy — T via fo(—1,0) = —x and f»(0,1) = v,

fs: S5, — T via f3(—1,0) = —x and f3(0,—1) = —v,

f4 : Scr4 — T via f4(1,0) = ¢ and f4(07 —1) = —y.

Therefore, the affine toric varieties

Ual = hOm(Sala T) = TQ? UO’2 = hom(S@, T) = T2’
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UUS = hOm(‘SUS’ T) = T27 UG4 = hom(SU4> T) = T27

together with

U, = hom(S;,,T) =R xT, U, =hom(S,,T) =R x T,

Ur, = hom(S.,,T) =R xT, U, =hom(S;,,T) =R x T,

U{O} = hom(S{o}, T) = Rz.

The gluing of the affine toric varieties U,, and U,, along their common
subset U,, gives TP' x T with coordinates ((x : 21),y) where z = z; — .
The gluing of the affine toric varieties U,, and U,, along their common subset
U,, gives T x TP with coordinates (—z, (yo : ¥1)) where y = 41 — yo. The
gluing of the affine toric varieties U,, and U,, along their common subset
U,, gives TP' x T with coordinates ((zq : z1), —y) where £ = x; — 9. The
gluing of the affine toric varieties U,, and U,, along their common subset

U,, gives T x TP' with coordinates (x, (yo : y1)) where y = y; — yo. The

75



following commutative diagram:
Usyy <—U; =—> U,

U U
U, U,
n

n

Up, <— U, — Uy,

Hence the gluing of these two gives the tropical toric variety

Xa(T) = (J] U)/~=TP' x TP".

oEA

The polytopes P = conv{0, (1,0),(0,1),(—1,0), (0, —1)} (the figure 4.2)
in Ng.Since conv{(1,0), (0,1)}, conv{(0,1),(=1,0)}, conv{(—1,0), (0, —1)},
conv{(0,—1),(1,0)} are the facets of P, and they are the convex hull of a

basis of N, Xp is a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.2. Given the lattice N ~ Z?, then Ng = N @ R ~ R?, the

dual lattice M ~ Z? and Mp = M ® R.

Let the fan A in Ng. Suppose that the fan A (the figure 4.3) has

o1 = pos{(1,0),(0,1)}, o2 = pos{(—1,—1),(0,1)}, o3 = pos{(1,0),(—1,—-1)},
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Figure 4.4: the polytope P
Figure 4.3: the fan A

together with

71 =01 Noy=pos{(0,1)}, 7o =09 N0z =pos{(—1,—1)},

T3 = 03N oy = pos{(1,0)}, and the origin.

Then the dual cones

O-Y = pOS{(l, 0)7 (07 1)}7 O-%/ ~ p03{<_1v O)’ (_1’ 1)}’ U{\S/ = pOS{(l, _1)7 (Ov _1)}'

Moreover, the corresponding semigroups

So'l = O'i/ NM = Zzo(l,()) D ZZO(O’ ].),
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50—2 = O';/ NM= Zzo(—l,O) @ Zzo(—l, 1),

503 = 0':\;/ NM = Zzo(l, —]_> D ZZO(O’ —]_),

together with

Sri = 8oy + 86y = Z>0(1,0) ® Z>0(—1,0) @ Z>0(0, 1),

Sry = Soy + S0y = Lizo(1, —1) @ Zizo(—1,1) & Zizo(—1, -1),

57‘3 — 503 + SUI = ZZO(L O) ® Z20(07 1) ©® ZZO(()? _1>7

S{O} = ZZO(L 0) D ZZO(Oa 1) S¥ ZZO(—L 0) D ZZO((]? —1)

Let f; be in U,, = hom(S,,,T) for all i = 1, 2,3, then we have some maps

fl : 501 — T via fl(lvo) =z and fl(oal) =Y,

fo: Sy, — T via fo(=1,0) = —z and fo(—=1,1) = —x + y,

f3: S, — T via f3(1,—1) =z —y and f3(0,—1) = —y,

Therefore, the affine toric variety

Us, = hom(Sgl, T) = ,]ng Uy, = hom(S@, T) = T2’
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Uy, = hom(Sy,, T) = T2,

together with

U, = hom(S;,,T) =R xT, U, =hom(S,T) =R x T,

U7-3 = hom(STS, T) =R x T, U{O} = hom(S{O}, T) = RQ.

The gluing of the affine toric varieties U,, and U,, along their common
subset U, gives TP? with coordinates (xg : z; : x3) where x = z; — 2
and y = x9 — zp. The gluing of the affine toric varieties U,, and U,, along
their common subset U,, gives TP? with coordinates (xo : o1 : x2) where
—r+y =2 —x9and —x = xy — 9. The gluing of the affine toric varieties
U,, and U,, along their common subset U,, gives TP? with coordinates

(o : 1 : y) where y = @3 — xg and & = x5 — .
The following commutative diagram:

Uy <— U, —> Uy,
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Hence the gluing of these two gives the tropical toric variety

Xa(T) = ([ U,)/~= TP,

cEA

The polytopes P = conv{0,(1,0),(0,1),(—1,—1)} (the figure 4.4) in
Ng.Since conv{(1,0),(0,1)}, conv{(0,1),(—=1,—-1)}, conv{(—1,-1),(1,0)}
are the facets of P, and they are the convex hull of a basis of N, Xp is

a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.3. Given the lattice N ~ Z?, then Ng = N ® R ~ R?, the

dual lattice M ~ Z? and Mp = M ® R.

Let the fan A in Ni. Suppose that the fan A (the figure 4.5) has

o1 = pos{(1,0),(1,1)}, o9 =pos{(1,1),(0,1)},

o3 = pos{(0,1),(=1,—1)}, o4 = pos{(—1,-1),(1,0)},

together with

T =01 09 = pOS{(l, 1)}, To = 09 M 03 = pOS{(O, 1)},

T3 =03 N oy =pos{(—1,—1)}, 74 =04 Noy = pos{(1,0)},
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Figure 4.6: the polytope P
Figure 4.5: the fan A

and the origin. Then the dual cones

0-1/ :pOS{(—l,—l),<O,1>}, 0-;/ :p08{<170),(—1,1)},

Ui\%/ :pOS{(—l,O),<—1,1)}, UZ\L/ :pOS{(O,—l),(l,—l)}.

Moreover, the corresponding semigroups

Sal = O'Y NM = Zzo((), 1) SP) Zzo(l, —1),

SU2 = 0'5/ NM = ZZO(LO) S5 Zzo(—]_, 1),

503 - 0':\5/ N M = Zzo(—l,O) @ Zzo(—l, 1),

504 - O'X NM= Zzo(o, —1) ) Zzo(l, —1),
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together with

STl = SUl + SU2 = ZZO(L 1) ® ZZO(L _1) ® ZZU(_17 1)7

57'2 = 502 + 503 = Z20(0> 1) ©® ZEO(L O) 52 ZZO(_L O>7

57'3 = SU?, + 504 = ZZU(_17 _1) ® ZZO(L _1) D ZZO(_L 1)7

57-4 - 50-4 —|— So'l - Zzo(l, O) @ Zzo((), 1) @ Zzo(o, —1),

S{O} — Zzo(l, 0) EB ZZO((]’ ].) @ Zzo(—l, 0) @ ZZO(O’ —1)

Let f; be in U,, = hom(S,,, T) for all i = 1,2, 3,4, then we have some
maps

fi:Ss, — T via f1(0,1) =y and fi(1,—1) =2 — v,

fo: Sy, — T via f5(1,0) =z and fo(—1,1) = —x + y,

f3: S, — T via f3(—=1,0) = —x and f3(—1,1) = —x + y,

fa:Se, = T via f4(0,—1) = —y and fy(1,—1) =z —y.

Therefore, the affine toric variety

Ual = hOm(Sala T) = TQ? UO’2 = hom(S@, T) = T2’
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UUS = hOm(‘SUS’ T) = T27 UG4 = hom(SU4> T) = T27

together with

U, = hom(S;,,T) =R xT, U, =hom(S,,T) =R x T,

Ur, = hom(S.,,T) =R xT, U, =hom(S;,,T) =R x T,

U{O} = hom(S{o}, T) = Rz.

The gluing of the affine toric varieties U,, and U,, along their common
subset U, gives TP' x T with coordinates ((xg : 1), —= + y) where z =
xg — x1. The gluing of the affine toric varieties U,, and U,, along their

common subset Uy, gives TP* x T with coordinates ((yo : y1), 2 — y) where

Y=Y — Y1

The two copies of TP! x T are glued along their second coordinates gives
TP' x TP? with coordinates ([20: 21, [to—21 : yo — 1 : 0]) = ([20 : 21], [0 —
x1 Yo —y1 : 0]) where z —y = 29 — 21. Since 2 — 21 = (o — 1) — (Yo — Y1),

(o — 1) — 20 = (Yo — y1) — z1. Hence the toric variety

:{([20221],[.1'0—%'1:yo—ylio])ETPlXTIP2|($0—.CE1)—20:
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(?/0 —yl) —21}7
={([z0: 2z1);[wo+y1 W0+ x1: 71+ 1)) € TP' x TP? | (ko — 21)—

Z0 = (yo - yl) - 21}7

where TH_ is a tropical Hirzebruch sur face.

The following commutative diagram:
Upy <= U, =— Uy,

o) u
U, U,
1

n

Uy, <— U, —> Uy,

The polytopes P = conv{0, (1,0), (1,1),(0,1), (=1, —1)} (the figure 4.6)
in Ng.Since conv{(1,0),(1,1)}, conv{(0,1),(1,1)}, conv{(0,1),(—1,—1)},
conv{(—1,—1),(1,0)} are the facets of P, and they are the convex hull of a

basis of N, Xp is a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.4. Given the lattice N ~ Z?, then Ng = N @ R ~ R?, the

dual lattice M ~ Z? and Mp = M ® R.
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Let the fan A in Ng. Suppose that the fan A (the figure 4.7) has

o1 = pos{(1,0),(1,1)}, oo = pos{(1,1),(0,1)},

o3 = pos{(0,1),(=1,-1)}, o4 = pos{(—1,—1),(0,—1)},

05 = pOS{(O, _1>7 (17 0)}7

together with

71 =01 N oy =pos{(1,1)}, o =02 Noz =pos{(0,1)},

T3 = 03N oy =pos{(—1,—1)}, 74 = 04 N o5 = pos{(0,—1)},

75 = 05 N oy = pos{(1,0)},

and the origin. Then the dual cones

O-i/ :pOS{(l,—l),(O,l)}, U;/ :pOS{(l,O),(—l,l)},

UZ\S/ :pOS{(—l,O),(—l,l)}, 0-1\1/ :pOS{(—l,O),(l,—l)},

o) = pos{(0,—1),(1,0)}.

85



Moreover, the corresponding semigroups

Sol = O'I/ NM = ZZO(O’ 1) ) Zzo(l, —1),

502 == O';/ NM= Zzo(l,O) D Zzo(—l, 1),

503 = Oi\i/ NM= Zzo(—l,()) D Zzo(—l, ].),

504 7 O'X ﬂ M = Zzo(—l, O) @ Zzo(l, —1),

505 = O'g/ M M = ZZO(()? —1) EB Zzo(l, 0),

together with

ST1 = 501 + 802 = ZZO(L 1) @ Z20(17 _1) @ ZZU(_17 1)7

STz : SO'Q + 503 =~ ZZO(Ov 1) 2 Z20<1’ O) D ZZO(_L O)?

S‘rg = SU3 -+ 50'4 = ZZO(_:l? —1) @ Zzo(l, —1) @ Zzo(—l, 1),

ST4 = 504 + SUs = ZZO(Ov _1) ® ZZO(LO) ©® ZZU(_1>0)7

ST5 = Sas + 55, = ZZO(L O) 2 Z20<Oa 1) D ZZO(()» _1)7

Stoy = Zx0(1,0) & Zx0(0,1) & Zxo(—1,0) & Z»o (0, —1).
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Therefore, the affine toric variety

UUl = h’Om(SUl’T) = T27 UGQ = hom(SU2>T> = T27

UUS = h‘Om(SUS’ T) = T27 UG4 = hom(SU4, T) = T27
U,, = hom(S,,,T) = T?,

together with

U, = hom(S;,,T) =R x T, U, = hom(S.,,T) =R x T,

U, = hom(S.,T) =R x T, U, = hom(S;,,T) =R x T,

The gluing of the affine toric varieties U,, and U,, along their common
subset U, gives TP! x T with coordinates ([z¢ : #1], —x+y) where x = zo—11.
The gluing of the affine toric varieties U,, and U,, along their common subset
U,, gives TP' x T with coordinates (—x, [z : 21]) where —x +y = 2 — 2.
The two copies of TP' x T are glued along their coordinates gives TP x TP*
with coordinates ([xzo : 1], [20 : z1]). Since we have some embedding hyy :

[jT4 — [ja4 via h44(1’0 — 1,1 — Xo,T1 — To + 2o — Zl) = (0,231 — Xo, 20 — 21)
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and h45 : U7—4 — UU5 via h45(.’130 — 1,1 — Tg,T1 — To + 20 — Zl> = (IO —
x1,0, 21— 29+ 29— 21), we have tropical isomorphism hysohy, : Uy, — Uy, via
h,450h241(0,$1—$0, 20—2’1> = (1’0-331,0,1’1—.%04-20—21). Slmllarly, h510h5_51 .
Uy, — Uy, via h5lohg51(x0—x1, 0,x1—xo+20—21) = (20—21, To—21+21— 20, 0),
and hjs 0 h1_11 : Uy, — U,, via hyg o hl_ll(zo — 21,0 — T1 + 21 — 20,0) =

(0,21 — 29, x0 — x1). Hence the toric variety

={([zo : 21],[20 : z1],[a : b: c]) € TP*XTP'xTP? | atxy = b+xp, atz1 = c+z},
that is, Xa(T) is the blow up of TP? at the two points [0 : —oo : —oc] and
[—00:0: —o0].

The following commutative diagram:

Uyy <— U, “— U,

The polytopes P = conv{0,(1,0),(1,1),(0,1),(=1,—1),(0,—1)} (the

figure 4.8) in Ng.Since conv{(1,0), (1,1)}, conv{(0, 1), (1,1)}, conv{(0,1), (—1,—-1)},
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Figure 4.8: the polytope P
Figure 4.7: the fan A

conv{(—1,—1),(0,—1)}, conv{(0,—1),(1,0)} are the facets of P, and they
are the convex hull of a basis of N, Xp is a smooth Fano polytope (by

Theorem 3.4.2).

Example 4.3.5. Given the lattice N ~ Z2, then Ng = N ® R ~ R?, the

dual lattice M ~ Z? and My = M ® R.

Let the fan A in Ngi. Suppose that the fan A (the figure 4.9) has

01 = pOS{(l, 0)7 (17 1)}v 09 = p03{<1’ 1)? (07 1)}7

03 = pOS{(O, 1)’ (_1v O)}’ Oy = pOS{(—l, O)? (_17 _1)}a

05 = pOS{(—l, _1)7 (07 _1)}7 06 = pOS{(O, _1)7 (1’ O)},
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Figure 4.10: the polytope P
Figure 4.9: the fan A

together with

71 =01 Noy=pos{(1,1)}, 7o =09 Naz = pos{(0,1)},

73 =03 MNog = pos{(—1,0)}, 7y = o4 Nos = pos{(=1,—-1)},

75 = a5 Nog = pos{(0,—1)}, 76 =06 N o1 = pos{(1,0)},

and the origin. Then the dual cones

UY :pOS{(—l,—l),<O,1)}, U;/ :pos{(l,O),(—l,l)},

U:\’,/ :pos{(—l,()),((),l)}, Uz\l/ :pos{(—l,l),(o,—l)},

0-;/ :pOS{(—l,O),(l,—1>}, U(\i/ :pOS{(O,—l),(l,O)}.
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Moreover, the corresponding semigroups

Sol = O'I/ NM = ZZO(O’ 1) ) Zzo(l, —1),

502 == O';/ NM= Zzo(l,O) D Zzo(—l, 1),

SU3 = O'g/ NM = Zzo(—l,O) D Zzo((), 1),

504 = O'X N M = Zzo(—l, 1) &) Zzo(o, —1),

505 = O';-)/ N M = Zzo(—l,()) EB Zzo(l, —1),

SUG ¥ O'g/ NM = Z20(07 —1) D ZZO(LO)?

together with

STl EN So'l -+ 502 - Zzo(l, 1) EB Zzg(l, —1) @ Zzo(—l, 1),

STQ = SO'Q + SUs = ZZ()(O? 1) S ZZO(L O) ©® ZZO(_L 0)7

ST3 — Sag + 504 - Zzo(—l, 0) EB Zzo(o, 1) EB 220(07 —1),

87'4 = 504 + 505 = ZZU(_17 _1) ® Z20(17 _1) D ZZO(_L 1)7

STs = SUs + 50'6 = Z20(0> _1) D Z20(1> O) D ZZO(_L 0)7
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STG = SOG + SUl = Z20(1> O) ® Z20(07 1) ©® ZZO<O7 _1>7
S{Q} = ZZO(L 0) 2, Zzo(o, 1) &b ZZO(_17 0) %, ZZO(()? —1)

Therefore, the affine toric variety

Uy, = hom(S,,,T) = T?, U,, = hom(S,,,T) = T?,

U¢73 - hom(SU3> T) %y T27 Ua4 = hom(S(M, T) = T2;
UUS e h0m<5057 T) = T27 UG’G 3 hom(SU6> T) = T27

together with

U., = hom(S;,,T)=RxT, U, =hom(S,,,T) =R x T,

Ur, = hom(S.,,T) =R xT, U, =hom(S;,T) =R x T,
Ur, = hom(S.,,T) =R x T, U, = hom(S;,T) =R x T,

U{O} = hom(S{o}, T) = RQ.

Let f; be in U,, = hom(S,,, T) for all i = 1,2,3,4,5,6, then we have
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some maps

fit 8o = T via f1(0,1) = y and fi(1,—1) =z — y,

fo: S, — T via f5(1,0) =z and fo(—1,1) = —x 4y,

f3 : 503 — T via f3(_]—a0) = —z and f3(07 1) =Y,

fa: 8, = Tvia f4(0,—1) = —y and fy(1,—1) = —z + v,

f5: S5, = T via f4(—1,0) = —z and fy(1,-1) =z —y,

f5: Sy, — T via f4(0,—1) ==y and f4(1,0) = x.

Since we have some embedding hy; : U, — U,, via hy(x + y,x —
y,—x+y) = (0,z—y,y) and hyg : U, — Uy, via hia(z +y,z—y,—x+y) =
(z,—z + y,0), we have tropical isomorphism hiy o hi : U, — U,, via
hiz o hi' (0,2 — y,y) = (x,—x + y,0). Similarly, hos 0 hyy : Uy, — Uy,
via hoz o hoy (1, —x + y,0) = (—,0,y), and hsy o hyy : U,, — U,, via
hssohgs (—2,0,y) = (0, =4y, —y), hasohyy : Uy, — U, via hysohy} (0, —z+
y,—y) = (=2, —y,0), hss 0 has : Uy, — Uy, Via hsg 0 hgy (—2, 7 — 3,0) =
(2,0, =), herohgy : Usy — Uy, via hgohgg (7,0, —y) = (0,2—y,y). Consider

the product TP* x TP x TP x TP? with homogeneous coordinates [zq : 21],
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[20 : 21],[yo : y1] on respective TP' and homogeneous coordinate [a : b : ¢] on
TP? Weset x = 29 — @1, * —y = 20 — 21, Y = Yo — y1. Hence the toric

variety

= {([wo : z1], [20 : 21], [yo, v1], [@ : b : ¢]) € TP x TP x TP!

xTP? | b+ 21 =c+x, a+21=b+2, c+y1=a+1y},

that is, Xa(T) is the blow up of TP? at the three points [0 : —co : —o0],

[—00:0: —o0], and [—o0 : —00 : 0].

The polytopes P = conv{0, (1,0),(1,1),(0,1),(0,—1),(=1,-1),(0,—1)}
(the figure 4.10 ) in Ng. Since conv{(1,0),(1,1)}, conv{(0,1),(1,1)},
conv{(0,1),(=1,0)}, conv{(—1,0),(=1,—=1)}, conv{(—1,—1),(0,—1)},
conv{(0,—1),(1,0)} are the facets of P, and they are the convex hull of a

basis of N, Xp is a smooth Fano polytope (by Theorem 3.4.2).
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