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Abstract

In this thesis, we survey and study tropical toric varieties with focus on

tropical toric Fano varieties. To construct tropical toric varieties, we start

with fans, just like the situation in classical algebraic geometry. However,

some constructions does not make sense in tropical settings. Therefore, we

need to choose a reasonable definition which give an analogue of a classical

toric variety. In the end of this paper, we use the definition we choose, and

explicitly calculate all smooth two-dimensional tropical toric Fano varieties

which we found are very similar to classical cases.
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Chapter 1

Introduction

The tropical geometry is a relatively recent subject in the field of mathe-

matics. Why does it have an adjective ”tropical”? In the 1980s, Imre Simon

(August 14, 1943 - August 13, 2009) who is a Hungarian-born Brazilian

mathematician and computer scientist pioneered the tropical geometry. The

word ”tropical” was coined by some French mathematicians in honor of Imre

Simon, because they thought Brazil is a tropical country. Hence there is not

any deeper meaning in an adjective ”tropical”, and this is why the tropical

geometry is not called ”temperate geometry” or ”frigid geometry”.

Why the mathematicians attend to the tropical geometry in recent years?

Because Grigory Mikhalkin has proven that the number of simple tropical
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curves (counted with appropriate multiplicities) of degree d and genus g that

pass through g + 3d− 1 generic points in R2 is equal to the Gromov-Witten

number Ng,d of the complex projective plane CP2, so the theorem is called

Mikhalkin’s correspondence theorem, see [19].

The main reference is the paper [17] by Henning Meyer. Some difference

are that we prove some propositions and provide more details with examples

and figures. Moreover, this paper main discusses about the smooth tropical

toric Fano varieties on two dimensional. The tropical toric variety and toric

varieties have the similar properties, for example, the tropical toric variety

X∆(T) � TP2 whereTP is the tropical projective space in the Example 4.3.2,

and the toric varietyX∆(T) � CP2 where CP is the complex projective space

in the Example 3.3.18.

The structure of the paper is as follows. In chapter 2, we recall the

semigroup, semiring and semifield, and introduce amoebas and the tropical

geometry where the tropical semifield (T,⊕,⊙) is a semifield with two oper-

ations a⊕ b := max{a, b} and a⊙ b := a+ b. Note that some papers or books

may be defined the tropical sum by a ⊕ b := min{a, b} (e.g. [15]), in fact,

the algebraic structures of max-algebra and min-algebra are isomorphic. For

more information see [13], [20], [10], [23] and [26].
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In chapter 3, we review some basic concepts of polyhedral geometry and

explain how they relate to toric varieties. For more details see [5], [22], [14],

[12], [11], [4], [28], [24] and [16]. And we will give a brief introduction to

Fano varieties and Fano polytopes. For careful statement see [14], [22] and

[5].

In the first part of the chapter 4, we describe the relationship between

K(G,R,M), hom(S,M), and explain the relationship between the algebraic

structures of K(G,R,M) and the algebraic structures of M . In the setion 2

and 3 of chapter 4, we explain the properties of tropical toric varieties, and

calculate five types of the smooth tropical toric Fano varieties.
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Chapter 2

Background

The chapter contains some basic definitions and propositions from trop-

ical geometry.

2.1 Non-Archimedean amoebas

In this section, we recall the valuation and amoebas. And we set C∗ =

C \ {0} in this paper. Let K be an algebraic closed field (e.g. C), and let An

denote an affine n-space over K.
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Firstly, we define a map Log : (C∗)n → Rn by

Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|).

Let u = (u1, . . . , un) be in Zn, then we said that z
u := z

u1
1 z

u2
2 · · · zun

n
is

the Laurent monomial. Moreover, the Laurent polynomial f is a finite linear

combination of Laurent monomials, that is, f =
�

u∈Zn auz
u where au is in

a field F (as C) and is only finitely many. Denoted by F [z±1
1 , . . . , z

±1
n
] is the

ring of Laurent polynomials in n variables over F .

Definition 2.1.1. An affine algebraic variety is the common zero set of a

collection {Fi}i∈I of complex polynomials. We write

V = V({Fi}i∈I) = {(x1, . . . , xn) ∈ Cn | Fi(x1, . . . , xn) = 0 ∀ i ∈ I}

where Fi = Fi(x1, . . . , xn) ∈ Cn[x1, . . . , xn]

Example 2.1.2. There are some trivial cases of algebraic varieties.

(1) V(0) = An.

(2) V(1) = ∅.

(3) V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)}.
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For any subset S of C∗[z±1
1 , . . . , z

±1
n
], we denote by

Z(S) := {z ∈ (C∗)n | f(z) = 0 for all f ∈ S},

that is, Z(S) is the common zero set of a collection {fi}i∈I of Laurent poly-

nomials in a subset S of C∗[z±1
1 , . . . , z

±1
n
].

Definition 2.1.3. We define the amoeba of Z(S) as A(Z(S)) := Log(Z(S))

which is a subset of Rn.

Remark 2.1.4. Let V be an algebraic variety, then we can also define the

amoeba of algebraic variety by A(V ) := Log(V ).

Example 2.1.5. Let f = 1
3z1 + 5

7z2 − 1 in C∗[z1, z2]. If f = 0, then

z2 = − 7
15z1 +

7
5 , and so V(f) = {(t,− 7

15t +
7
5)|t ∈ C}. Then A(V(f)) =

Log(V(f)) = (log |t|, log | − 7
15t+

7
5 |).

For more information about the amoebas see [11] chapter 6 and [27]. The

figure of the amoeba is used for GeoGebra (Curve[ln(abs(t)), ln(abs(exp(−5/7)−

t ∗ exp(−8/21))), t,−100, 100]) or we can also use for maple, for more details

see [1].

Next, we define a map Logt : (C∗)n → Rn by

Logt(z1, . . . , zn) = (log
t
|z1|, . . . , logt |zn|)
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Figure 2.1: The amoeba A(Z(f)) for f = 1
3z1 +

5
7z2 − 1.

for small t in R. And we denote by

Zt := {z ∈ (C∗)n |
�

u∈Zn

au(t)z
u = 0}.

Let the amoeba of Zt as At(Zt) := Logt(Zt) which is a subset of Rn. Similarly,

if Vt is an algebraic variety which depend on a parameter t , then we can also

define the amoeba of algebraic variety by At(Vt) := Logt(Vt).

We recall that the Hausdorff distance. Let (M, d) be a metric space,

and let A and B be two non-empty subsets of (M, d). Then we define the

Hausdorff distance dH(A,B) between A and B by

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.
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On Rn, the subsets At converges to A as t → ∞ in the Hausdorff metric

on compacts, that is, for any compact set D in Rn, and there exists a neigh-

borhood U of D such that dH(At ∩U,A∩U) → 0 as t → ∞ ([13], Prop. 1.2

and [18], Prop. 1.6 ).

Definition 2.1.6. The set C{{t}} is called the field of Puiseux series with

complex coefficients if C{{t}} is the set of all formal power series a(t) =

�
q∈Q aqt

q where aq is in C∗ and {q} is bounded below and has a finite set of

denominators, that is,

C{{t}} := {
∞�

i=m

ait
i/n | ai ∈ C∗

,m ∈ Z, n ∈ Z≥0}.

We set C{{t}} = K from now on.

Definition 2.1.7. Let K be a field of Puiseux series. A non-Archimedean

valuation on K is a function

val : K → R ∪ {−∞}

satisfying the properties:

(i) val(a) = −∞ if and only if a = 0,

(ii) val(ab) = val(a) + val(b),
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(iii) val(a+ b) ≤ max{val(a), val(b)}.

For each a in K with a �= 0, we define the valuation of a by val(a) =

min{q | aq �= 0} (since {q} is bounded below). And we define a norm by

|a|val := exp(val(a)). Let VK be an algebraic variety on (K∗)n, we define a

map V al : (K∗)n → Rn by

V al(z1, . . . , zn) = (log |z1|val, . . . , log |zn|val) = (val(z1), . . . , val(zn)).

Then we can also define the amoeba of algebraic variety VK on (K∗)n by

A(VK) := V al(Vt).

Theorem 2.1.8 (a version of Viro patchworking). Let Vt be an algebraic

variety for small t in R, and let VK be an algebraic variety on (K∗)n, then

the non-Archimedean amoeba A(VK) is the limit of the amoebas At(Vt) as

t → ∞ with respect to the Hausdorff metric on compacts.

2.2 Semifield

In this section, we will introduce the semigroup, semiring, and semifield.

Definition 2.2.1. Let G be a nonempty set. A binary operation in G is a

function ∗ : G×G → G. We denote the element f(a, b) of G by a ∗ b for all

9



(a, b) ∈ G. The set G is said to be closed under the binary operation ∗ and

denoted by (G, ∗).

The usual addition and multiplicative are two binary operations on R.

Definition 2.2.2. A semigroup is a nonempty set G together with a binary

operation ∗ which satisfies associative, that is, (a ∗ b) ∗ c = a ∗ (b ∗ c) for all

a, b, c ∈ G.

A semigroup (G, ∗) is called a commutative if a∗b = b∗a for all a, b ∈ G.

A semigroup (G, ∗) is called idempotent if a ∗ b ∈ {a, b} for all a, b ∈ G.

Definition 2.2.3. A monoid is a semigroup G with an identity element e,

that is, a ∗ e = e ∗ a = a for all a ∈ G.

Proposition 2.2.4. Every group is a monoid.

Proof. Let G be a group. According to the definition of group, G is closed

under a binary operation ∗, and G satisfies associative and has an identity

element e, hence G is a monoid.

Example 2.2.5. Let (2Z>0, ∗) be the set of the positive even integers under

the usual multiplication of real numbers. Suppose that x, y, and z belong to

2Z>0, then x ∗ (y ∗ z) = (x ∗ y) ∗ z, so 2Z>0 satisfies associative. But 1 is not

10



even, that is, 1 is not in 2Z>0, so 2Z>0 does not have an identity element.

Hence (2Z>0, ∗) is a semigroup which is not a monoid.

Definition 2.2.6. Let S1 and S2 be semigroup. A map ψ : S1 → S2 is a

morphism of semigroup if ψ(xy) = ψ(x)ψ(y) for all x, y in S1.

Example 2.2.7. Define a map φ : (Z>0,+) → (Z4,+) by φ(x) = x̄, for all x

in Z>0. For all x, y in Z>0, φ(x+ y) = x+ y = x̄+ ȳ = φ(x) + φ(y). Hence

φ is a morphism of semigroup.

Definition 2.2.8. A semiring is a nonempty R together with two binary

operations

⊕ : R×R → R and ⊗ : R×R → R

such that (R,⊕) is a commutative monoid with identity element 0R, (R,⊗)

is a semigroup, and the operation ⊗ distributes over ⊕, that is, a⊗ (b⊕ c) =

a⊗ b⊕ a⊗ c where a, b, c are in R.

Note that, according to the definition of ring, every ring is a semiring.

Definition 2.2.9. A semifield is a semiring (R,⊕,⊗) together with (R\{0R},⊗)

is an abelian group where 0R is an identity element for the binary operation

⊕.

Note that, by the definition of ring, every field is a semifield.
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Example 2.2.10. Let T = R ∪ {−∞}. We define two operations on T

by a ⊕ b := max{a, b} and a ⊙ b := a + b. Suppose that a and b, and c

are in T. Without loss of generality, assume that a ≥ b. Becuase a ⊕ b =

max{a, b} = a is in T, so T is closed under a binary operation ⊕. If a

and b are in R, then a ⊙ b = a + b is in R; if one of a and b is −∞, then

a ⊙ b = −∞, and so T is closed under a binary operation ⊙. Suppose that

a, b, and c are in T. Without loss of generality, assume that a ≥ b ≥ c.

Because a⊕ (b⊕ c) = max{a,max{b, c}} = max{a, b} = a and (a⊕ b)⊕ c =

max{max{a, b}, c} = max{a, c} = a, so a⊕ (b⊕ c) = (a⊕ b)⊕ c, i.e. (T,⊕) is

a semigroup. Since −∞⊕ a = a⊕−∞ = a, −∞ is an identity element, and

so a⊕b = b⊕a = max{a, b}, that is, (T,⊕) is a monoid with identity element

−∞. Moreover, a⊕b = max{a, b} = b⊕a, so (T,⊕) is a commutative monoid.

Since (T\{−∞},⊙) = (R,+) is abelian group, (T,⊕,⊙) is a semifield.

The above T will be discussed in more details in the next section.

2.3 Tropical Semifields

Definition 2.3.1. Let T = R ∪ {−∞}. The tropical semifield (T,⊕,⊙) is

the semifield with operations a ⊕ b := max{a, b} and a ⊙ b := a + b. (c.f.

Example 2.2.10)
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Remark 2.3.2. Since (T\{−∞},⊙) is an abelian group, we can define the

tropical division by

x� y := x− y,

for all x and y in T\{−∞}.

Proposition 2.3.3. (a) Both addition and multiplication are commutative:

x⊕ y = y ⊕ x and x⊙ y = y ⊙ x. (b) The distributive law holds for tropical

addition and tropical multiplication: x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z.

Proof. (a) (i) x⊕ y = max{x, y} = max{y, x} = y ⊕ x.

(ii) x⊙ y = x+ y = y + x = y ⊙ x.

(b) x ⊙ (y ⊕ z) = x + (y ⊕ z) = x + max{y, z} = max{x + y, x + z} =

(x+ y)⊕ (x+ z) = x⊙ y ⊕ x⊙ z.

Remark 2.3.4. For all integer n and all x in T, we define

x
⊙n := x⊙ · · · ⊙ x =

n�

i=1

x = nx.

Note that −∞ is the additive identity and zero is the multiplicative unit,

that is, x⊕ (−∞) = x and x⊙ 0 = x.

Definition 2.3.5. The Rn is a module over the tropical semiring

13



(R ∪ {∞},⊕,⊙), with the operations of coordinatewise tropical addition

(a1, · · · , an)⊕ (b1, · · · , bn) = (max{a1, b1}, · · · ,max{an, bn})

and tropical scalar multiplication

λ⊙ (a1, · · · , an) = (λ+ a1, · · · , λ+ an)

Definition 2.3.6. Let (M,⊕M) be a commutative monoid over tropical semi-

field T. Then M is called a tropical module if there exists a scalar multipli-

cation ⊙M : T×M → M denoted by ⊙M(t,m) = t⊙M x for all t in T and

x in M , such that for all t1, t2 in T and x, y in M ,

(i) t1 ⊙M (x⊕M y) = (t1 ⊙M x)⊕M (t1 ⊙M y);

(ii) t1 ⊙M (t2 ⊙M x) = (t1 ⊙ t2)⊙M x;

(iii) 1T ⊙M x = x where 1T = 0 is the multiplicative identity of T;

(iv) if t1 ⊙M x = t2 ⊙M x then either t1 = t2 or x = −∞.

For careful statements, we refer the reader to [21].

Definition 2.3.7. A T-vector space or tropical vector space M over T con-

sists of a commutative monoid (M,⊕M) and ⊙M : T × M → M such that

14



for all t1, t2 in T, x, y in M , we have:

(i) t1 ⊙M (x⊕M y) = (t1 ⊙M x)⊕M (t1 ⊙M y);

(ii) t1 ⊙M (t2 ⊙M x) = (t1 ⊙ t2)⊙M x;

(iii) 1T ⊙M x = x for the tropical multiplicative identity 1T.

(iv) (t1 ⊕ t2)⊙M x = (t1 ⊙M x)⊕M (t2 ⊙M x);

Definition 2.3.8. The tropical projective n-space, denoted by TPn, is de-

fined as the quotient

(Tn+1 \ (−∞, . . . ,−∞))
�
∼,

where ∼ denotes the equivalence relation, (x0, . . . , xn) ∼ (y0, . . . , yn) if and

only if there exists a λ in T∗ such that (y0, . . . , yn) = (λ⊙ x0, . . . , λ⊙ xn) =

(λ+ x0, . . . , λ+ xn).

Definition 2.3.9. Fix a weight vector ω = (ω1, . . . , ωn) ∈ Rn. The weight of

the variable xi is ωi. The weight of a term p(t) ·xα1
1 · · · xαn

n
is the real number

order(p(t)) + α1ω1 + · · ·+ αnωn.

Definition 2.3.10. The tropical monomial is defined to be an expression of

15



the form

c⊙ x
a1
1 ⊙ · · · ⊙ x

an
n

where a1, · · · , an ∈ Z≥0 and c is a constant.

Definition 2.3.11. The finite linear combination of tropical monomials is

called a tropical polynomial. Namely, f = c1 ⊙ x
a11
1 ⊙ · · · ⊙ x

a1n
n

⊕ · · · ⊕ ck ⊙

x
ak1
1 ⊙ · · · ⊙ x

akn
n

Definition 2.3.12. Consider a polynomial f ∈ C[x1, . . . , xn] and a vector

ω ∈ Rn, the initial form inω(f) is the sum of all terms in f of smallest

ω-weight.

Definition 2.3.13. The tropical hypersurface of f is the set

T (f) = {ω ∈ Rn | inω(f) is not a monomial}.

Remark 2.3.14. All of points ω of the T (f) are attained by at least two of

the linear functions. Note that T (f) is invariant under dilation, so we can

say T (f) by giving its intersection with the unit sphere. (See [2] and the

references therein)

16



Chapter 3

Toric variety and Fano variety

We begin by recalling the some basic definitions and notations which are

necessary for study tropical toric varieties.

3.1 Polyhedral Geometry

In this section, we will recall the polyhedral geometry since they relate

to affine toric varieties and tropical toric varieties.

Definition 3.1.1. Let R be a ring. A right R-moduleM over R is an abelian

group, usually written additively, and an operation M × R → M (denoted

(m, r) �→ mr) such that for all r, s in R, x, y in M , we have:

17



(i) (x+ y)r = xr + yr.

(ii) x(r + s) = xr + xs.

(iii) (xs)r = x(sr).

(iv) x1R = x if R has multiplicative identity 1R.

Similarly, we can define a left R-module via an operation R ×M → M

denoted (m, r) �→ rm and satisfy the above conditions. If R is a ring with

identity, then a right R-module is also called a unitary right R-module. If R

is a commutative ring, then a right R-modules are the same as left R-modules

with mr = rm for all m in M , r in R and are called R-modules.

If R is a field, then a R-module M is called a vector space.

Definition 3.1.2. An abelian group F is called a free abelian group if it has

a basis.

Example 3.1.3. The trivial group {0} is the free abelian group on the empty

basis.

Definition 3.1.4. Let R be a ring. Let M be a right module and N be a

left module over R. Let F be the free abelian group on M × N . Let K be

the subgroup of F generated by all elements of the forms

(i) (a+ b, c)− (a, c)− (b, c);

(ii) (a, c+ d)− (a, c)− (a, d);
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(iii) (ar, c)− (a, rc),

for all a, b ∈ M ; c, d ∈ N ; r ∈ R. The quotient group F/K is called the

tensor product of M and N , and we write M⊗RN or simply M⊗N forF/K.

The element (a, c) in F/K is denoted by a⊗ c.

We denote by N � Zn the free abelian group and NR := N ⊗Z R the

associated real vector space; moreover, we denote by M := hom(N,Z) the

dual lattice of N and MR := M ⊗Z R.

Definition 3.1.5. The polyhedron P is the intersection of finitely many

halfspaces in NR, that is, a set of the form

P = {X ∈ NR | AX ≥ b}

where A ∈ (N∨
R )

d and b ∈ Rd.

If A ∈ (N∨)d, b ∈ Zd, then P is called a rational polyhedron.

If A ∈ (N∨)d, b ∈ Rd, then P is called polyhedron with rational slopes.

Example 3.1.6. Let A =

�
1 2
3 4

�
and b =

�
1
2

�
, then

P = {X ∈ R2 | AX ≥ b} = {(x, y) ∈ R2 | x+ 2y ≥ 1, 3x+ 4y ≥ 2}
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Figure 3.1: rational polyhedron

Definition 3.1.7. For every finite set S ⊆ Rd, if a set S is not convex set,

the convex hull of S is the smallest convex set containing it, which we denote

it by conv(S), that is,

conv(S) :=
�

{K ⊆ Rd | S ⊆ K,K is a convex set}

.

Proposition 3.1.8. Let S be a finite subset of Rn. Then

conv(S) = {λ1x1 + · · ·+ λmxm | x1, . . . , xm ∈ S, λi ≥ 0,
m�

i=1

λi = 1}

Proof. For any finite set {x1, . . . , xm} ⊆ S, λi ≥ 0 with
�

m

i=1 λi = 1.

We have λ1x1 + · · · + λmxm = (1 − λm)
��

m

i=1
λixi
1−λm

�
+ λmxm for λm <
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1. Therefore,
�

m

i=1 λixi ∈ conv(S). Conversely, for any finite set S0 =

{x1, . . . , xm} ⊆ S, conv(S0) = {λ1x1 + · · · + λmxm | x1, . . . , xm ∈ S0, λi ≥

0,
�

m

i=1 λi = 1} ⊆ conv(S). So conv(S) = {λ1x1+· · ·+λmxm | {x1, . . . , xm} ⊆

S, λi ≥ 0,
�

m

i=1 λi = 1}. Hence if S = {x1, . . . , xm} ⊆ Rn is a finite set, then

we have conv(S) = {λ1x1+· · ·+λmxm | x1, . . . , xm ∈ S, λi ≥ 0,
�

m

i=1 λi = 1}.

Definition 3.1.9. For every finite set S in a real vector space, the positive

hull or conical hull of S is denoted by pos(S) and is the set

pos(S) = {
�

i∈I

λimi | {mi}i∈I ⊆ S, λi ≥ 0}.

Note that if S = ∅, then pos(∅) = {0}.

Definition 3.1.10. The Minkowski sum of two sets X and Y in a vector

space, defined by X + Y , is the set {x+ y | x ∈ X, y ∈ Y }

Definition 3.1.11. A set σ is called a polyhedral cone (or simply a cone

later) if

σ = pos(S) = {
�

i∈I

λimi | {mi}i∈I ⊆ S, λi ≥ 0}

where S ⊆ NR is finite.

By the Minkowski-Weyl theorem for cones, the cone σ is a finitely gen-

erated if and only if σ = {X ∈ NR | AX ≥ 0} where A ∈ (MR)d and b ∈ Rd.
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(i.e. σ is a polyhedron). For more details see [28] Section 1.3, [4] Theorem

1.15, and [16] p. 88.

Example 3.1.12. Consider the cone

σ = pos{(1, 0), (1, 1)}

= {λ1(1, 0) + λ2(1, 1) | λ1, λ2 ≥ 0}

=

��
x

y

�
∈ R2 |

�
1 −1
0 1

��
x

y

�
≥

�
0
0

��

in R2, then we can see its picture below:

Figure 3.2: the cone σ

Definition 3.1.13. Let σ be a cone. We have u
⊥ := {v ∈ NR | �u, v� = 0}

for a dual vector u in MR. Moreover, we define a face τ of the cone σ by

τ := σ ∩ u
⊥ = {v ∈ σ | �u, v� = 0}.

Definition 3.1.14. Let τ and σ be nonempty polyhedra. τ is called a facet

of σ if τ is a face of σ and dim(τ) + 1 = dim(σ) (denoted by τ ≺ σ), that is,

a facet τ is a face of codimension 1.
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Definition 3.1.15. A polyhedral cone σ is said a pointed cone if the origin

is a face of σ. Otherwise, the polyhedral cone is called a blunt.

Example 3.1.16. In R, C1 = {x ∈ R | x ≥ 0} is a pointed cone, and

C2 = {x ∈ R | x > 0} is a blunt.

Definition 3.1.17. A cone σ is called simplicial if it is generated by a linearly

independent subset of the lattice N , that is, σ = pos(C) is called simplicial

cone if C is linearly independent.

Definition 3.1.18. A simplicial cone σ is called unimodular if it is generated

by a subset of a basis of the lattice N .

Example 3.1.19. Let N = Z(1, 0) ⊕ Z(0, 1). We consider the cone σ =

pos{(1, 0), (3, 2)} inN . Then {(1, 0), (3, 2)} is linearly independent, but (2, 1)

is not in Z≥0(1, 0)⊕ Z≥0(3, 2)}. Hence the cone σ is simplicial.

Example 3.1.20. LetN = Z(1, 0)⊕Z(0, 1). Given the cone σ = pos{(1, 0), (1, 1)}

in N . Then {(1, 0), (1, 1)} is a linearly independent set, and Z≥0(1, 0) ⊕

Z≥0(1, 1)} can generate all of integer vectors in the cone σ. Hence the cone

σ is unimodular.

Definition 3.1.21. The set P = conv(S) = {
�

i∈I λimi | {mi}i∈I ⊆ S, λi ≥

0,
�

i∈I λi = 1} is said a polytope in NR where S ⊆ NR is finite.
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The P = conv(S)+ pos(V ) for some finite sets S, V in NR if and only if

P is a polyhedron, that is, P = {X ∈ NR | AX ≥ b} where A ∈ (MR)d and

b ∈ Rd. For more details see [28] Theorem 1.2 and Section 1.2.

Example 3.1.22. Let A =





1 0
0 1
−2 −1
−1 −1



 and b =





1
1
−6
−4



, then

P = {(x, y) ∈ R2 | x ≥ 1, y ≥ 1,−2x− y ≥ −6,−x− y ≥ −4}

Therefore, ∅, V1, . . . , V4, e1, . . . , e4, or P are faces of P where V1, . . . , V4 and

e1, . . . , e4 are vertices and edges of P respectively.

Figure 3.3: the face of P

Definition 3.1.23. Let f ∈ C[x1, . . . , xn], and write f =
�

α∈Zn
≥0

cαx
α. The

Newton polytope of f , denoted NP (f) or New(f), is the lattice polytope

New(f) = conv({α ∈ Z≥0 | cα �= 0}).
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Figure 3.4: The tropical curve
Trop(f)

Figure 3.5: The Newton sub-
division of Trop(f)

Example 3.1.24. The tropicalisation of

f = t
2 · x3 + x

2
y + xy

2 + t
2 · y3 + x

2 + 1
t
· xy + y

2 + x+ y + t
2

is the tropical curve (as illustrated in Figure 3.4)

Trop(f) = 2⊙ x
⊙3 ⊕ x

⊙2 ⊙ y ⊕ x⊙ y
⊙2 ⊕ 2 · y⊙3 ⊕ x

⊙2 ⊕ x⊙ y ⊙ (−1)⊕ y
⊙2

⊕ x⊕ y ⊕ 2

= max{2 + 3x, 2x+ y, x+ 2y, 2 + 3y, 2x, x+ y − 1, 2y, x, y, 2}

The vertices of the tropical curve are:

(2, 0), (1, 1), (1, 0), (0, 2), (0, 1), (0,−1), (−1, 0), (−1,−1), (−2,−2)
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The Newton subdivision of the tropical curve Trop(f) is

New(Trop(f)) = conv{(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2),

(0, 3), (1, 1), (1, 2), (2, 1)}.

We illustrate the Newton subdivision of in Figure 3.5.

Definition 3.1.25. A polyhedral complex ∆ is a collection of polyhedra

such that the following the two conditions are satisfied: if U ∈ ∆ and F is a

face of U , then F ∈ ∆; if U, V ∈ ∆, then U ∩ V is a face of U and V .

The empty set is in the polyhedral complex ∆, i.e. a polyhedral complex

∆ contains empty face.

Definition 3.1.26. F is a polyhedral fan if F is a polyhedral complex and

each σ in F is a cone.

Note that we consider the fan is collection of non-empty polyhedral cones

in this paper.

Example 3.1.27. Suppose that τ1 = pos{(−1, 0)}, τ2 = pos{(1, 1)}, τ3 =

pos{(0,−1)}, σ1 = pos{(−1, 0), (0,−1)}, σ2 = pos{(−1, 0), (1, 1)}, and σ3 =

pos{(0,−1), (1, 1)} Let F = {(0, 0), τ1, τ2, τ3, σ1, σ2, σ3}}. Then (0, 0) is the

face of other elements of F and (0, 0) = τ1∩τ2 = τ1∩τ3 = τ2∩τ3, τ1 = σ1∩σ2
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is the face of σ1 and σ2, τ2 = σ2 ∩ σ3 is the face of σ2 and σ3, τ3 = σ1 ∩ σ3 is

the face of σ1 and σ3. Hence F is a fan.

Figure 3.6: The fan F

Definition 3.1.28. Let F be a polyhedral complex. We define the following

two notations:

• F
(k) is a collection of k-dimendional polyhedra of F .

• |F | =
�

U∈F

U is said the support of F .

Example 3.1.29. Recall from Example 3.1.27 that

F = {σ1, σ2, σ3, τ1, τ2, τ3, (0, 0)}.

F
(0) = {(0, 0)}, F

(1) = {τ1, τ2, τ3}, F
(2) = {σ1, σ2, σ3}.

|F | =
�

U∈F

U = σ1 ∪ σ2 ∪ σ3 ∪ τ1 ∪ τ2 ∪ τ3 ∪ (0, 0).

Definition 3.1.30. A polyhedral fan F is a rational fan if all cones in F are

rational polyhedra.
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Definition 3.1.31. A polyhedral fan F in a vector space NR is complete if

the support of F is NR, i.e. |F | = NR.

Example 3.1.32. Recall from Example 3.1.27 that F = {σ1, σ2, σ3, τ1, τ2, τ3, (0, 0)}.

Then |F | =
�

U∈F

U = σ1 ∪ σ2 ∪ σ3 ∪ τ1 ∪ τ2 ∪ τ3 ∪ (0, 0) = R2
.

Definition 3.1.33. Let σ be a pointed rational cone in NR. The dual cone

σ
∨ := {v ∈ MR | �v, u� ≥ 0, ∀u ∈ σ}.

Example 3.1.34. Let N = Ze1 ⊕ Ze2 where e1 = (1, 0) and e2 = (0, 1) are

the standard basis vectors, and let σ = {0}. Then NR = N ⊗ R � R2, and

M = Hom(N,Z) = Ze∨1 ⊕Ze∨2 , thus MR = M ⊗R � R2. Since v · 0 ≥ 0 for

all v in MR, we have

σ
∨ = {v ∈ MR | �v, 0� ≥ 0}

= pos{(1, 0), (−1, 0), (0, 1), (0,−1)}.

Definition 3.1.35. Let P be a polytope in NR. We define the dual polytope

P
∨ := {v ∈ MR | �u, v� ≥ −1 for all u ∈ P}.

Theorem 3.1.36 (Farkas’ Theorem). Let σ be a polyhedral cone in NR,
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then the dual cone σ
∨ is a polyhedral cone in MR.

Proof. See [24] Corollary 22.3.1, [8] P.11 and [28] § 1.4.

Definition 3.1.37. A rational polyhedral cone is called strongly convex if it

contains non-zero linear subspaces, namely, it does not contain line through

the origin.

Proposition 3.1.38. Let σ lie in NR � Rn be a polyhedral cone. Then the

following conditions are equivalent:

(i) σ is strongly convex;

(ii) {0} is a face of σ;

(iii) σ ∩ (−σ) = {0};

(iv) n is the dimension of σ∨;

(v) σ contains no positive-dimensional subspace of NR.

Lemma 3.1.39 (Separation Lemma). Let ∆ be a fan in NR, and let σ1 and

σ2 be polyhedral cones in ∆. Let τ = σ1 ∩ σ2 be a common face of σ1 and

σ2. Then there exists u in σ
∨
1 ∩ σ

∨
2 such that

τ = σ1 ∩ u
⊥ = σ2 ∩ u

⊥
.
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Proposition 3.1.40. Let σ be a unimodular cone. Let the set {u1, . . . , un}

be a basis of N . If σ = pos{u1, . . . , uk}, then we have

σ
∨ = pos{u∨

1 , . . . , u
∨
k
,±u

∨
k+1, . . . ,±u

∨
n
}.

Proof. For all j = 1, . . . , k. Let u be in σ. By the definition of then cone,

suppose that u =
k�

i=1

λiui where λ1, . . . , λk ≥ 0. Then we get that

u
∨
j
· (

k�

i=1

λiui) = λj ≥ 0.

For j = k + 1, . . . , n, then we have

u
∨
j
· (

k�

i=1

λiui) = λj = 0.

Conversely, let v be in σ
∨, then v =

�
m

j=1 ηju
∨
j
=

�
k

j=1 ηju
∨
j
+
�

m

j=k+1 ηju
∨
j
.

For j = 1, . . . , k, we have v · u = λj ≥ 0 where u =
�

k

j=1 λjui is in σ. For

j = k+1, . . . ,m, since
�

m

j=k+1 ηju
∨
j
=

�
m

j=k+1 η
+
j
u
∨
j
+
�

m

j=k+1 η
−
j
(−u

∨
j
), v is

in pos{u∨
1 , . . . , u

∨
k
,±u

∨
k+1, . . . ,±u

∨
n
}.

Theorem 3.1.41 (Duality Theorem). If σ is a convex polyhedral cone in

NR, then (σ∨)∨ = σ.

Proof. This is well known result. For careful information see [12] P.47 and
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[24] Theorem 14.1.

Proposition 3.1.42. Let the set {u1, . . . , un} be a basis of N . Let σ =

pos{u1, . . . , uk} be a unimodular cone in NR, then (σ∨)∨ = σ.

Proof. According to the above Proposition 3.1.40, we have

σ
∨ = pos{u∨

1 , . . . , u
∨
k
,±u

∨
k+1, . . . ,±u

∨
n
}

since σ be a unimodular cone. So we get that

σ
∨∨ = {ω ∈ NR |< ω, v >≥ 0, ∀v ∈ σ

∨}.

Let u belong to a cone σ = pos{u1, . . . , uk}, then u =
k�

i=1

λiui, and so

u · v = λi ≥ 0 for some i.

Conversely, let ω be in σ
∨∨, then we write ω =

n�

i=1

ciui. Then

ω =
k�

i=1

ciui +
n�

i=k+1

c
+
i
ui +

n�

i=k+1

c
−
i
(−ui).

For i = 1, . . . , k, 0 ≤ ω · u∨
i
= ci. For i = k + 1, . . . , n, 0 ≤ ω · u∨

i
= ci and

0 ≤ ω · (−u
∨
i
) = ci, so we get that ci = 0 for i = k + 1, . . . , n.

Lemma 3.1.43 (Gordon’s Lemma). Let σ be a rational convex polyhedral

31



cone in NR, then Sσ := σ
∨ ∩M is a finitely generated semigroup where M is

a daul lattice of N .

Proof. By the Farkas’ Theorem, the dual cone σ
∨ is a polyhedral cone in

MR � Rn. Let σ
∨ = pos{U} where U = {u1, . . . , um} is a finite subset of

M . Take K = {
�

m

i=1 tiui | 0 ≤ ti ≤ 1}, then K is a bounded region of

MR, and so K is compact. Since M � Zn, K ∩ M is finite. We claim that

U ∪ (K ∩M) generate the semigroup Sσ = σ
∨ ∩M . If u is in Sσ, then we

write u =
�

m

i=1 riui where ri is nonnegative real number for all i = 1, . . . ,m.

Because ri = �ri�+ti where �ri� which denotes the floor of ri is a nonnegative

integer and 0 ≤ ti ≤ 1 for all i = 1, . . . ,m, u =
�

m

i=1�ri�ui+
�

m

i=1 tiui. Then

�
m

i=1 tiui is in K ∩M . Therefore, u is a nonnegative integer combination of

elements of U ∪ (K ∩M).

The Gordon’s lemma is well known result. For more information also

see [8], [22] or [28].

Example 3.1.44. Let N=Z(−1, 0) ⊕ Z(0,−1). Take σ = pos{(−1, 0)}. If

(x1, x2) · (−1, 0) = −x1 ≥ 0, then the dual cone

σ
∨ = {v ∈ MR | v · (−1, 0) ≥ 0}

= pos{(−1, 0), (0, 1), (0,−1)}
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So the corresponding semigroup Sσ = σ
∨ ∩ M = Z≥0(−1, 0) ⊕ Z≥0(0, 1) ⊕

Z≥0(0,−1).

Proposition 3.1.45. Let ∆ be a fan in NR, and let τ is a face of σ in ∆,

then

Sτ = Sσ + Z≥0(−u)

for some −u in the dual lattice M .

Proposition 3.1.46. Take a fan ∆ in NR. Let σ1 and σ2 in ∆, and let

τ = σ1 ∩ σ2, then

Sτ = Sσ1 + Sσ2

3.2 Fiber products of affine varieties

In the section, our references are from definitions in [9], [6], [8] and [5].

Given two affine varieties V1 = V(f1, . . . , fs) and V2 = V(g1, . . . , gt)

where f1, . . . , fs are in C[x1, . . . , xm] and g1, . . . , gt are in C[y1, . . . , yn], then

we have

V1 × V2 := V(f1, . . . , fs, g1, . . . , gt).

Let V1 and V2 be algebraic variety in An and Am, respectively. A map
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f : V1 → V2 is a morphism of algebraic variety if there is a map f̃ : An → Am

with f̃(x) = (f̃1(x), . . . , f̃m(x)), that is, f = f̃ |V1 : V1 → V2

Definition 3.2.1. For any subset V of An, we define the ideal of V to be

I(V ) = {f ∈ K[x1, . . . , xn] | f(x) = 0 for all x ∈ V }

Definition 3.2.2. Let X be nonempty set ,and let T be a collection of

subsets of X. T is a topology on X if it satisfies the following properties:

(1) ∅ and X are in T .

(2) If Ui is in T for all i in index I, then
�

i∈I

Ui is in T .

(3) If U1, . . . , Un are in T , then
n�

i=1

Ui is in T .

The members in T are called the open sets in X. Moreover, the com-

plements of the open sets is called closed sets in X.

The algebraic varieties are closed sets on An. Therefore, we will show a

topology on An.

Proposition 3.2.3. If T is a collection of the algebraic varieties on An, i.e.

T = {V ⊆ An | V is an affine algebraic variety}, then T is a topology.
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Proof. To start with, since ∅ = V(1) and An = V(0), ∅ and An are in T .

Next, suppose that V1 = V({fi}i∈I) and V2 = V({fj}j∈J) where fi and fj

are in K[x1, . . . , xn] for all i and j. We claim that V1 ∩V2 = V({fi}i∈I∪J). A

point p is in V1 ∩ V2 if and only if p is in V({fi}i∈I) and V({fj}j∈j) ,which is

fi(p) = 0 for all i in I ∪ J , so a point p is in V({fi}i∈I∪J).

Finally, we only need to prove that V(f1)∪V(f2) = V(f1f2) where f1 and f2

are in K[x1, . . . , xn]. If p belongs to V(f1) ∪V(f2), then p belongs to V(f1)

or V(f2), and so f1(p) = 0 and f2(p) = 0. Then f1(p)f2(p) = 0. Hence

p belongs to V(f1f2). Conversely, if p belongs to V(f1f2). If p belongs to

V(f1), then we are done, and if not, then f1(p) �= 0. Since p belongs to

V(f1f2), that is, f1(p)f(p) = 0, f2(p) = 0. So p belongs to V(f2). Hence p

belongs to V(f1) ∪V(f2).

We call the above topology T the Zariski topology on An.

Definition 3.2.4. The maximal spectrum maxSpec(R) (or Specm(R)) of a

ring R is the set of all maximal ideals of R, that is,

Specm(R) = {m ⊂ R | m is a maximal ideal of R }.

If we have a ring homomorphism f : R → S, then we might not have

a map maxSpec(S) → maxSpec(R) since f
−1(m) is not always a maximal
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ideal in R for m is a maximal ideal in S. For example, a ring homomorphism

f : Z → Q, (0) is a maximal ideal in Q, but f−1(0) = (0) is not a maximal

ideal in Z since (0) ⊂ (2) ⊂ Z.

Definition 3.2.5. The spectrum Spec(R) of a ring R is the set of all prime

ideals of R, that is,

Spec(R) = {p ⊂ R | p is a prime ideal of R }.

Proposition 3.2.6. Let f : R → S be a ring homomorphism. If P be a

prime ideal in S, then f
−1(P ) is a prime ideal in R.

Proof. Assume that P is a prime ideal in S. Let xy belong to f
−1(P ), then

f(xy) = f(x)f(y) is in P . Since P is a prime ideal, f(x) is in P or f(y) is in

P . Then x is in f
−1(P ) or y is in f

−1(P ). Hence f
−1(P ) is a prime ideal in

R.

By the above proposition, if a ring homomorphism f : R → S, then

we define a map φ : Spec(S) → Spec(R) by φ(P ) = f
−1(P ), which is a

well-defined.

Definition 3.2.7. Given two sets X and Y over a third set S, that is, the
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mappings of sets f : X → S and g : Y → S, then the fiber product

X ×S Y := {(x, y) ∈ X × Y | f(x) = g(y)}.

Let f : X → S and g : Y → S be two morphisms of schemes. The

fiber product of X and Y is a scheme X ×S Y together with projection

π1 : X×Y → X and π2 : X×Y → Y such that whenever we have morphisms

φ1 : W → X and φ2 : W → Y for any scheme W . There exists a unique

morphism π : W → X × Y making this diagram commute

W

φ2

��

φ1

��

∃!π

��

X × Y

π2

��

π1
��X

f

��

Y
g

�� S

Definition 3.2.8. Let K be a commutative ring with identity. A ring R is

called a K-algebra if the additive group (R,+) is a unitary K-module, and

k(ab) = (ka)b = a(kb) for all k in K and a, b in R.

Definition 3.2.9. Let V be an affine variety inAn. We define the coordinate
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ring of V to be the quotient of the polynomial ring by the ideal, that is,

K[V ] � K[x1, . . . , xn]
�
I(V ).

For coordinate rings whenever we have a diagram with C-algebra homo-

morphism φ
∗
i
: C[Vi] → C[W ], there should be a unique C-algebra homomor-

phism π
∗ : C[V1 × V2] → C[W ] that make this diagram commute

C[W ] C[V1]

π∗
1

��

φ∗
1��

C[V2]

φ∗
2

��

π∗
2

��C[V1 × V2]

∃!π∗

��

3.3 Toric Varieties

Definition 3.3.1. Let (K,+,×) be a semifield and let K∗ = K \{0+} where

0+ is the identity element for the binary operation +. The set (K∗)n is called

the n-dimensional algebraic torus over K.

Example 3.3.2. The S
1 = {z ∈ C∗ | zz̄ = 1} � C∗, so S

1 is the one-

dimensional algebraic torus over C
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Definition 3.3.3. A one-parameter subgroup of a tours T is a morphism

λ : C∗ → T which is a group homomorphism.

Remark 3.3.4. The group hom(C∗
, T ) of one-parameter subgroup is a lat-

tice where hom(C∗
, T ) = {λ : C∗ → T | λ is a morphism of variety and

a group homomorphism}.

Definition 3.3.5. A character of a tours T is a morphism χ : T → C∗ which

is a group homomorphism.

Remark 3.3.6. The character group hom(T,C∗) of a torus T is a lattice

where hom(T,C∗) = {χ : T → C∗ | χ is a morphism of variety and a group

homomorphism}.

In fact, we can show that the following propositions. Let v = (v1, . . . , vn)

be in Zn. Let χ and λ be in hom((C∗)n and hom(C∗
, (C∗)n) respectively.

Then we have

χ
v(x1, . . . , xn) = x

v1
1 x

v2
2 · · · xvn

n
, and λ

v(t) = (tv1 , . . . , tvn).

Definition 3.3.7. Let (S, ∗) be a semigroup and (X, ·) be nonempty. A

map S × X → X given by (s, x) �→ s · x is called an action of S on X if

s1 · (s2 · x) = (s1 ∗ s2) · x where for all s1, s2 in S, and x in X. Moreover, S

acts on X, X is called S-set.
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If S is a monoid (or group) with identity e, then S acts on X if there

exists a map which satisfies the above conditions and e ·x = x for all x in X.

Definition 3.3.8. Let X be a S-set. For any x in X, S · x = {s · x | g ∈ S}

is called the S-orbit of x.

Definition 3.3.9. Let σ be a cone, and let Sσ be the corresponding semi-

group. We define the affine toric variety Uσ corresponding to a cone σ by

Uσ := hom(Sσ,C)

where hom(Sσ,C) denotes the semigroup homomorphism Sσ → C and C is

considered as a semigroup under multiplication.

Example 3.3.10. Let N � Z2 be a lattice with associated vector space

NR � R2, and let M be a dual lattice of N with associated vector space

MR � R2. Given a cone σ = pos{0} in NR where 0 denotes (0, 0), then its

dual cone {0}∨ = pos{(1, 0), (−1, 0), (0, 1), (0,−1)}, then S{0} = {0}∨∩M =

Z≥0(1, 0)⊕Z≥0(−1, 0)⊕Z≥0(0, 1)⊕Z≥0(0,−1). Let χ(1,0) = x1, χ(−1,0) = x2,

χ
(0,1) = x3, and χ

(0,−1) = x4. Then 1 = χ
(0,0) = χ

(1,0)
χ
(−1,0) = x1x2 and

1 = χ
(0,0) = χ

(0,1)
χ
(0,−1) = x3x4, and so x2 = x

−1
1 and x4 = x

−1
3 . So

C[S{0}] = C[{0}∨∩M ] = C[x1, x
−1
1 , x3, x

−1
3 ] � C[x1, x2, x3, x4]/(x1x2x3x4−1).

40



Hence we have

U{0} = Spec(C[S{0}])

= Spec(C[x1, x
−1
1 , x3, x

−1
3 ])

� Spec(C[x1, x2, x3, x4]/(x1x2x3x4 − 1))

� (C∗)2.

So U{0} is the 2-dimensional algebraic torus over C.

Similarly, given a lattice N � Zn, then we can also show that U{0} is the

n-dimensional algebraic torus over C.

Proposition 3.3.11. Let σ be a cone, and let Sσ be the corresponding

semigroup. Then there is bijective correspondence between hom(Sσ,C) and

Spec(C[Sσ]).

Proof. See [5] Proposition 1.3.1.

Remark 3.3.12. A toric variety is an irreducible variety X containing an

algebraic torus T as a Zariski open subset of X such that these exists an

open T -orbit of X isomorphic to T .

In C (or field), the semigroup homomorphism hom(Sσ,C) is isomorphic

to Spec(C[Sσ]). Moreover, if t is in the algebraic torus T and f is in the
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semigroup algebra C[Sσ], then t · f lies in C[Sσ] is defined by s �→ f(t−1 · s)

for all s in T . (See [5] chapter 1 and chapter 5)

Example 3.3.13. Let X be the multiplicative group of nonzero complex

numbers C∗ and let T be the a 1-dimensional algebraic torus C∗. Since {0}

is an affine algebraic variety, T = C\{0} is a Zariski open subset of X.

Define a map f : T × X → X given by (t, x) �→ t · x. Take x = 1 ∈ C∗,

C∗ · 1 = {t · 1 | t ∈ C∗} is an open C∗-orbit of x and is isomorphic to C∗.

Example 3.3.14. Let X be the multiplicative group of nonzero complex

numbers Pn and let T be the a n-dimensional algebraic torus (C∗)n. Since

{0} is an affine algebraic variety, T = Pn\V (x0x1 · · · xn) is a Zariski open

subset of X. Define a map f : T × X → X given by (t, x) �→ t · x. Take

x = [1, · · · , 1] ∈ Pn, then (C∗)n · x = {[1 : t1 : · · · : tn] | (t1, · · · , tn) ∈ (C∗)n}

is an open (C∗)n-orbit of x and is isomorphic to (C∗)n.

Proposition 3.3.15. Let σ be a polyhedral cone, and let τ be a face of σ,

then the map Uτ → Uσ embeds Uτ as a principal open subset of Uσ.

Remark 3.3.16. Because {0} is a face of all polyhedral cone σ, the torus

U{0} is a principal open subset of all Uσ.

Let ∆ be a fan, and let σ1 and σ2 be in ∆. Then σ1 ∩ σ2 is a face

of σ1 and σ in ∆. Moreover, Uσ1 Uσ2 are the corresponding affine toric
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varieties. According to Proposition 3.3.15, we have two embedding maps

h1 : Uσ1∩σ2 �→ Uσ1 and h2 : Uσ1∩σ2 �→ Uσ2 . We define an equivalence relation

by A ∼ B where A and B are in Uσ1 and Uσ2 respectively if and only if

h1 ◦ h−1
2 (B) = A. Note that we have the following commutative diagram:

Uσ1∩σ2� �

h1

��

� � h2 �� Uσ2

h2◦h−1
1

��

Uσ1

h1◦h−1
2

��

Definition 3.3.17. Given a fan ∆ in NR. We define the toric variety by the

quotient space

X∆ :=

�
�

σ∈∆

Uσ

�
�
∼,

that is the disjoint union of the affine toric varieties, and ∼ is the above

equivalence relation.

Next, the following example of the toric variety is over C. Albeit we

will discuss the same case in the Example 4.3.2, it is over tropical semifield

T. And we will know the difference between toric varieties and tropical toric

varieties later.

Example 3.3.18. Given the lattice N � Z2, then NR = N ⊗ R � R2, the

dual lattice M � Z2 and MR = M ⊗R. Let the fan ∆ in NR. Suppose that
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Figure 3.7: the fan ∆ Figure 3.8: the dual cones σ∨
1 , σ

∨
2 , σ

∨
3

the fan ∆ has

σ1 = pos{(1, 0), (0, 1)}, σ2 = pos{(−1,−1), (0, 1)}, σ3 = pos{(1, 0), (−1,−1)},

together with

τ1 = σ1 ∩ σ2 = pos{(0, 1)}, τ2 = σ2 ∩ σ3 = pos{(−1,−1)},

τ3 = σ3 ∩ σ1 = pos{(1, 0)}, and the origin.

Then the dual cones

σ
∨
1 = pos{(1, 0), (0, 1)}, σ∨

2 = pos{(−1, 0), (−1, 1)}, σ∨
3 = pos{(1,−1), (0,−1)}.
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Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(1, 0)⊕ Z≥0(0, 1),

Sσ2 = σ
∨
2 ∩M = Z≥0(−1, 0)⊕ Z≥0(−1, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(1,−1)⊕ Z≥0(0,−1),

together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 0)⊕ Z≥0(−1, 0)⊕ Z≥0(0, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(1,−1)⊕ Z≥0(−1, 1)⊕ Z≥0(−1,−1),

Sτ3 = Sσ3 + Sσ1 = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).

Let x1 := χ
(1,0), x2 := χ

(−1,0), x3 := χ
(0,1) and x4 := χ

(0,−1). Then

x1x2 = 1 and x3x4 = 1, and we have

C[Sσ1 ] = C[x1, x3], C[Sσ2 ] = C[x2, x2x3], C[Sσ3 ] = C[x1x4, x4],

C[Sτ1 ] = C[x1, x2, x3], C[Sτ2 ] = C[x1x4, x2x3, x2x4], and C[Sτ3 ] = C[x1, x3, x4].
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Therefore, the affine toric variety

Uσ1 = hom(Sσ1 ,C) � SpecC[Sσ1 ] = SpecC[x1, x3] � C× C,

Uσ2 = hom(Sσ2 ,C) � SpecC[Sσ2 ] = SpecC[x2, x2x3] � C× C,

Uσ3 = hom(Sσ3 ,C) � SpecC[Sσ3 ] = SpecC[x1x4, x4] � C× C,

together with

Uτ1 = hom(Sτ1 ,C) = C
∗ × C, Uτ2 = hom(Sτ2 ,C) = C

∗ × C,

Uτ3 = hom(Sτ3 ,C) = C
∗ × C, U{0} = hom(S{0},C) = C

∗ × C∗
.

The gluing of the affine toric varieties Uσ1 and Uσ2 along their common

subset Uτ1 gives CP2 with coordinates (z0 : z1 : z2) where x1 = z1/z0 and

x3 = z2/z0. The gluing of the affine toric varieties Uσ2 and Uσ3 along their

common subset Uτ2 gives CP2 with coordinates (z0 : z1 : z2) where x2x3 =

z1/z0 and x2 = z2/z0. The gluing of the affine toric varieties Uσ3 and Uσ4

along their common subset Uτ3 gives CP2 with coordinates (z0 : z1 : z2)

where x3 = z1/z0 and x1 = z2/z0.
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The following commutative diagram:

Uσ1 <
⊃ Uτ1

⊂ > Uσ2

Uτ3

<

⊃

Uτ2

∪

∧

Uσ3

∨

∩
⊂

>

Hence the gluing of these two gives the toric variety

X∆(T) =

�
�

σ∈∆

Uσ

�
�
∼ = CP2

.

Theorem 3.3.19 (Hironaka’s Theorem). Let V be a quasi-projective vari-

ety. Then there exists a smooth quasi-projective variety X and a projective

birational morphism π : X → V . Furthermore, π may be assumed to be an

isomorphism on the smooth locus of V , and if V is a projective variety, then

so is X.

Proof. See [25] p.106.

Let X = {(x, [p]) ∈ An × Pn−1 | x ∈ [p]} in An × Pn−1. The blow − up

of An at a point [p] is the map π : X → An via (x, [p]) �→ x.
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3.4 Fano varieties

In this section, we will introduce and outline the Fano variety and Fano

polytope. For more information see [5], [22], [7], [8] and [14].

Definition 3.4.1. For all r in Z, we define the Hirzebruch surface

Hr := {([x0 : x1], [y0 : y1 : y2]) ∈ CP1 × CP2 | xr

0y0 = x
r

1y1}.

Since Hr is isomorphic to H−r for all r in Z, we sometimes assume Z≥0.

Theorem 3.4.2. Let P ba a polytope in NR. If all of facets of P are the

convex hull of a basis of N if and only if XP is a smooth Fano variety.

Proof. See [14] Proposition 3.6.7 and [7] Lemma 8.5.

The Fano varieties in two-dimension are also called a del Pezzo surface.

Theorem 3.4.3. There exist five distinct toric Fano varieties of two-dimension

up to isomorphism,

1. CP2,

2. CP1 × CP1,

3. the equivariant blowing-up of CP2 at one point (i.e. the Hirzebruch

surface H1),
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4. the equivariant blowing-up of CP2 at two point,

5. the equivariant blowing-up of CP2 at three point.

Proof. See [22] Propsition 2.21.

49



Chapter 4

Tropical Toric Variety

4.1 K(G,R,M)

Definition 4.1.1. For all real number x, we define

x
+ := max(x, 0),

x
− := max(−x, 0),

and called positive part and negative part of x, respectively.

Remark 4.1.2. The x
+ and x

− are non-negative and x = x
+ − x

−.

Definition 4.1.3. For all extended real-valued function f , the positive part
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of f is defined by f
+(x) := max{f(x), 0}, and the negaive part of f is defined

by f
−(x) := max{−f(x), 0}. So we have f = f

+ − f
−.

Remark 4.1.4. Let f := (f1, · · · , fn) ∈ R1×n, then f
+ = (f+

1 , · · · , f+
n
),

f
− = (f−

1 , · · · , f−
n
), and f = f

+ − f
−.

Proposition 4.1.5. Let f := (f1, · · · , fn) ∈ R1×n and x := (x1, · · · , xn) ∈

Rn, then the equations f · x = 0 if and only if f+ · x = f
− · x.

Proof. Suppose that f · x = 0 where f := (f1, · · · , fn) ∈ R1×n and x :=

(x1, · · · , xn) ∈ Rn. Then (f1, · · · , fn) · (x1, · · · , xn) = 0 implies f1 × x1 +

· · · fn × xn = 0. Since fi = f
+
i
− f

−
i

for all i = 1, · · · , n, we have (f+
1 −

f
−
1 )× x1 + · · ·+ (f+

n
− f

−
n
)× xn = 0. Therefore, f+

1 × x1 + · · ·+ f
+
n
× xn =

f
−
1 × x1 + · · ·+ f

−
n
× xn. Hence f

+ · x = f
− · x.

Conversely, assume that f
+ · x = f

− · x where f
+
, f

− ∈ R1×n and x :=

(x1, · · · , xn) ∈ Rn, then f
+
1 × x1 + · · ·+ f

+
n
× xn = f

−
1 × x1 + · · ·+ f

−
n
× xn.

So we have (f+
1 − f

−
1 )× x1 + · · ·+ (f+

n
− f

−
n
)× xn = 0. Hence f · x = 0 since

fi = f
+
i
− f

−
i

for all i = 1, · · · , n and x := (x1, · · · , xn) ∈ Rn.

Definition 4.1.6. Let S be a semigroup in Zn and let G = {g1, · · · , gm}

be a finite set of generators of S. Let R = {r1, · · · , rk} ⊆ Zm generate

the integer relation between a set of G, that is, SpanZ(R) = {z ∈ Zm |

g1z1 + · · · + gmzm = 0}. Let M be another commutative semigroup. We
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define

K(G,R,M) :=
�
x ∈ M

|G| | r+ · x = r
− · x ∀r ∈ R

�

We will discuss about that r · x = 0 is different from r
+ · x = r

− · x in

the tropical semifield T.

Example 4.1.7. Let S ⊆ Z2 and let G = {(1, 1), (4, 4)} be the generating

set of S. Then |G| = 2, and we have (1, 1)z1 + (4, 4)z2 = 0 for all z1, z2 ∈ Z.

This implies R = {(−4, 1)} and SpanZ(R) = {(z1, z2) ∈ Z2 | z1 + 4z2 = 0}

Let M = T and let x = (x1, x2) ∈ T2. Then r · x = 0T where 0T is

the tropical additive identity. This implies (−4 ⊙ x1) ⊕ (1 ⊙ x2) = 0T, so

max{−4 + x1, 1 + x2} = −∞. Hence (x1, x2) = (−∞,−∞).

However, r+ ·x = (0, 1) · (x1, x2) = (0⊙x1)⊕ (1⊙x2) = max{0+x1, 1+x2}.

Similarly r−·x = max{4+x1, 0+x2}. So {(x1, x2) ∈ T2 | r+ · x = r
− · x ∀r ∈ R} =

{−∞, x1 + 3 = x2}. Then K(G,R,T) = {−∞, x1 + 3 = x2}

Hence r · x = 0 is different from r
+ · x = r

− · x in T.

Proposition 4.1.8. Given G = {g1, . . . , gm}. Let R = {r1, · · · , rk} ⊆

Zm Let M be a tropical semifield T. Suppose that K = K(G,R,T) =

{x ∈ Tm | r+ · x = r
− · x ∀r ∈ R}. We define two operations ⊕K : K×K →

K and ⊗K : T×K → K by x⊕K y = (x1 ⊕ y1, . . . , xm ⊕ ym) and t⊗K x =

(t⊙x1, . . . , t⊙xm), respectively. Then (K,⊕K ,⊗K) is a tropical vector space.
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Proof. Let x = (x1, . . . , xm), y = (y1, . . . , ym), and v = (v1, . . . , vm) be in

K, and let t, t1, and t2 be in T. Given r = (z1, . . . , zm) is in R. Then

r
+ · x = r

− · x and r
+ · y = r

− · y. We claim that K is closed under an

operations ⊕K .

r
+ · (x⊕K y) = (z+1 , . . . , z

+
m
) · (x1 ⊕ y1, . . . , xm ⊕ ym)

= (z+1 ⊙ (x1 ⊕ y1))⊕ · · · ⊕ (z+
m
⊙ (xm ⊕ ym))

= (z+1 +max{x1, y1})⊕ · · · ⊕ (z+
m
+max{xm, ym})

= max{z+1 + x1, z
+
1 + y1} ⊕ · · · ⊕max{z+

m
+ xm, z

+
m
+ ym}

= ((z+1 ⊙ x1)⊕ (z+1 ⊙ y1))⊕ · · · ⊕ ((z+
m
⊙ xm)⊕ (z+

m
⊙ ym))

= ((z+1 ⊙ x1)⊕ · · · ⊕ (z+
m
⊙ xm))⊕ ((z+1 ⊙ y1)⊕ · · · ⊕ (z+

m
⊙ ym))

(since (T,⊕) is a commutative monoid.)

= ((z+1 , . . . , z
+
m
) · (x1, . . . , xm))⊕ ((z+1 , . . . , z

+
m
) · (y1, . . . , ym))

= (r+ · x)⊕ (r+ · y)

= (r− · x)⊕ (r− · y)

= ((z−1 , . . . , z
−
m
) · (x1, . . . , xm))⊕ ((z−1 , . . . , z

−
m
) · (y1, . . . , ym))

= ((z−1 ⊙ x1)⊕ · · · ⊕ (z−
m
⊙ xm))⊕ ((z−1 ⊙ y1)⊕ · · · ⊕ (z−

m
⊙ ym))

= ((z−1 ⊙ x1)⊕ (z−1 ⊙ y1))⊕ · · · ⊕ ((z−
m
⊙ xm)⊕ (z−

m
⊙ ym))

(since (T,⊕) is a commutative monoid.)
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= max{z−1 + x1, z
−
1 + y1} ⊕ · · · ⊕max{z−

m
+ xm, z

−
m
+ ym}

= (z−1 +max{x1, y1})⊕ · · · ⊕ (z−
m
+max{xm, ym})

= (z−1 ⊙ (x1 ⊕ y1))⊕ · · · ⊕ (z−
m
⊙ (xm ⊕ ym))

= (z−1 , . . . , z
−
m
) · (x1 ⊕ y1, . . . , xm ⊕ ym)

= r
− · (x⊕K y)

Hence x⊕K y is in K.

We claim that K is closed under an operations ⊗K .

r
+ · (t⊗K x) = (z+1 , . . . , z

+
m
) · (t⊙ x1, . . . , t⊙ xm)

= (z+1 ⊙ (t⊙ x1))⊕ · · · ⊕ (z+
m
⊙ (t⊙ xm))

= ((z+1 ⊙ t)⊙ x1)⊕ · · · ⊕ ((z+
m
⊙ t)⊙ xm) (since (T,⊙) satisfies associative.)

= ((t⊙ z
+
1 )⊙ x1)⊕ · · · ⊕ ((t⊙ z

+
m
)⊙ xm) (since (T \ {0T},⊙) is abelian.)

= (t⊙ (z+1 ⊙ x1))⊕ · · · ⊕ (t⊙ (z+
m
⊙ xm))

= t⊙ ((z+1 ⊙ x1)⊕ · · · ⊕ (z+
m
⊙ xm)) ( since (T,⊕,⊙) is a semifield.)

= t⊙ (r+ · x)

= t⊙ (r− · x)

= t⊙ ((z−1 ⊙ x1)⊕ · · · ⊕ (z−
m
⊙ xm))

= (t⊙ (z−1 ⊙ x1))⊕ · · · ⊕ (t⊙ (z−
m
⊙ xm)) (since (T,⊕,⊙) is a semifield.)
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= ((t⊙ z
−
1 )⊙ x1)⊕ · · · ⊕ ((t⊙ z

−
m
)⊙ xm) (since (T \ {0T},⊙) is abelian.)

= ((z−1 ⊙ t)⊙ x1)⊕ · · · ⊕ ((z−
m
⊙ t)⊙ xm)

= (z−1 ⊙ (t⊙ x1))⊕ · · · ⊕ (z−
m
⊙ (t⊙ xm)) (since (T,⊙) satisfies associative.)

= (z−1 , . . . , z
−
m
) · (t⊙ x1, . . . , t⊙ xm)

= r
− · (t⊗K x)

Hence t⊗K x is in K.

x⊕K (y ⊕K v) = x⊕K (y1 ⊕ v1, . . . , ym ⊕ vm)

= (x1 ⊕ (y1 ⊕ v1), . . . , xm ⊕ (ym ⊕ vm))

= ((x1 ⊕ y1)⊕ v1), . . . , (xm ⊕ ym)⊕ vm)

= (x1 ⊕ y1, . . . , xm ⊕ ym)⊕K v

= (x⊕K y)⊕K v

(0T, . . . , 0T)⊕K x = (−∞, . . . ,−∞)⊕K (x1, . . . , xm)

= ((−∞)⊕ x1, . . . , (−∞)⊕ xm)

= (x1, . . . , xm)
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(t1 ⊙ t2)⊗K x = ((t1 ⊙ t2)⊙ x1, . . . , (t1 ⊙ t2)⊙ xm)

= (t1 ⊙ (t2 ⊙ x1), . . . , t1(⊙t2 ⊙ xm))

= t1 ⊗K (t2 ⊙ x1, . . . , t2 ⊙ xm)

= t1 ⊗K (t2 ⊗K x)

(t1 ⊕ t2)⊗K x = ((t1 ⊕ t2)⊙ x1, . . . , (t1 ⊕ t2)⊙ xm)

= ((t1 ⊙ x1)⊕ (t2 ⊙ x1), . . . , (t1 ⊙ xm)⊕ (t2 ⊙ xm))

= (t1 ⊙ x1, . . . , t1 ⊙ xm)⊕K (t2 ⊙ x2, . . . , t1 ⊙ xm)

= (t1 ⊗K x)⊕K (t2 ⊗K x)

t⊗K (x⊕K y) = t⊗K (x1 ⊕ y1, . . . , xm ⊕ ym)

= (t⊙ (x1 ⊕ y1), . . . , t⊙ (xm ⊕ ym))

= ((t⊙ x1)⊕ (t⊙ y1), . . . , (t⊙ xm)⊕ (t⊙ ym))

= (t⊙ x1, . . . , t⊕ xm)⊕K (t⊙ y1, . . . , t⊕ ym)

= (t⊗K x)⊕K (t⊗K y)

Hence (K,⊕K ,⊗K) is a tropical vector space.

Proposition 4.1.9. If M is a abelian group, then K(G,R,M) is a abelian
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group.

Proof. Let M be an abelian group with an operation ∗ : M × M → M

by ∗(a, b) = a ∗ b. Then M
|G| is also an abelian group. Because G is finite

set, so we can consider |G| = k. We want to show that K(G,R,M) is a

subgroup of Mk. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) in K(G,R,M).

We claim that x ∗ y−1 = (x1 ∗ y−1
1 , . . . , xk ∗ y−1

k
) in K(G,R,M) where y

−1 is

the inverse for y. Since M is an abelian group, we have xi ∗ y−1
i

in M for all

i = 1, . . . , k, thus x ∗ y−1 in M
k. Let r = (z1, . . . , zk) in SpanZR. Since M is

an abelian, M is a Z-module, thus (z+
i
· (xi ∗ y−1

i
)) = ((z+

i
· xi) ∗ (z+i · y−1

i
))

and (z−
i
· (xi ∗ y−1

i
)) = ((z−

i
· xi) ∗ (z−i · y−1

i
)) for all i = 1, . . . , k. Moreover,

r
+ · x = r

− · x and r
+ · y−1 = r

− · y−1, because x = (x1, . . . , xk) and y =

(y1, . . . , yk) in K(G,R,M). So we have

r
+ · (x ∗ y−1) = (z+1 , . . . , z

+
k
) · (x1 ∗ y−1

1 , . . . , xk ∗ y−1
k
)

= (z+1 · (x1 ∗ y−1
1 )) ∗ · · · ∗ (z+

k
· (xk ∗ y−1

k
))

= ((z+1 · x1) ∗ (z+1 · y−1
1 )) ∗ · · · ∗ ((z+

k
· xk) ∗ (z+k · y−1

k
))

= ((z+1 · x1) ∗ · · · ∗ (z+k · xk)) ∗ ((z+1 · y−1
1 ) ∗ · · · ∗ (z+

k
· y−1

k
))

= r
+ · x ∗ r+ · y−1

= r
− · x ∗ r− · y−1
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= ((z−1 · x1) ∗ · · · ∗ (z−k · xk)) ∗ ((z−1 · y−1
1 ) ∗ · · · ∗ (z−

k
· y−1

k
))

= ((z−1 · x1) ∗ (z−1 · y−1
1 )) ∗ · · · ∗ ((z−

k
· xk) ∗ (z−k · y−1

k
))

= (z−1 · (x1 ∗ y−1
1 )) ∗ · · · ∗ (z−

k
· (xk ∗ y−1

k
))

= (z−1 , . . . , z
+
k
) · (x1 ∗ y−1

1 , . . . , xk ∗ y−1
k
)

= r
− · (x ∗ y−1).

Hence we get x ∗ y−1 in K(G,R,M), i.e. K(G,R,M) is a group.

Next we claim that K(G,R,M) is an abelian. Suppose that x = (x1, . . . , xk)

and y = (y1, . . . , yk) in K(G,R,M). Since M is an abelian, xi ∗ yi = yi ∗ xi

for all i = 1, . . . , k. Then

x ∗ y = (x1, . . . , xk) ∗ (y1, . . . , yk)

= (x1 ∗ y1, . . . , xk ∗ yk)

= (y1 ∗ x1, . . . , yk ∗ xk)

= y ∗ x

Hence K(G,R,M) is an abelian group.

By the above proposition, K(G,R,T \ {−∞}) is an abelian group since

(T \ {−∞},⊙) is an abelian group.
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Example 4.1.10. Let S ⊆ Z2 and let G = {(1, 2), (2, 4)} be the generating

set of S. Then |G| = 2, and we have (1, 2)z1 + (2, 4)z2 = 0 for all z1, z2 ∈ Z.

This implies R = {r = (−2, 1)}. So r
+ = (0, 1) and r

− = (2, 0).

Given an abelian group M = (Z4,+). Let x = (x1, x2) ∈ Z4×Z4. If r+ ·x =

r
− · x, then x2 = 2x1, and so K(G,R,Z4) = {(x1, x2) ∈ Z4 × Z4 | x2 = x1}

is subset of Z4 × Z4.

We claim that K(G,R,Z4) is a subgroup of Z2
4. Suppose that (x1, x2) and

(y1, y2) are inK(G,R,Z4), then x2 = 2x1 and y2 = 2y1. Then 2(x1+(−y1)) =

2x1 + 2(−y1) = 2x1 + (−2y1) = x2 + (−y2) where (−y1,−y2) is the inverse

element of (y1, y2), so (x1 + (−y1), x2 + (−y2)) is in K(G,R,Z4).

Since xi+ yi = yi+xi for all i = 1, 2, (x1, x2)+ (y1, y2) = (x1+ y1, x2+ y2) =

(y1 + x1, y2 + x2) = (y1, y2) + (x1, x2)

Hence K(G,R,Z4) is abelian group.

Proposition 4.1.11. If M is a ring, then K(G,R,M) is a M -module.

Proof. Suppose that M is a ring with binary operation ∗, together with

a second binary operation ⊗. Because (M, ∗,⊗) is a ring, so (M, ∗) is an

abelian group, thus K(G,R,M) is also an abelian group.

Define a operation � : K(G,R,M) ×M → K(G,R,M) via x �m = (x1 ⊗

m, . . . , xk ⊗ m). To check that it is well-defined. Suppose that r is in R

and |G| = k. Let m,n be in M and let x = (x1, . . . , xk), y = (y1, . . . , yk) in
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K(G,R,M). Then r
+ · x = r

− · x.

r
+ · (x�m) = (z+1 , . . . , z

+
k
) · (x1 ⊗m, . . . , xk ⊗m)

= z
+
1 ⊗ (x1 ⊗m) ∗ · · · ∗ z+

k
⊗ (xk ⊗m)

= (z+1 ⊗ x1)⊗m ∗ · · · ∗ (z+
k
⊗ xk)⊗m

= (z+1 ⊗ x1, . . . , z
+
k
⊗ xk)�m

= (r+ · x)�m

= (r− · x)�m

= (z−1 ⊗ x1, . . . , z
−
k
⊗ xk)�m

= (z−1 ⊗ x1)⊗m ∗ · · · ∗ (z−
k
⊗ xk)⊗m

= z
−
1 ⊗ (x1 ⊗m) ∗ · · · ∗ z−

k
⊗ (xk ⊗m)

= (z−1 , . . . , z
−
k
) · (x1 ⊗m, . . . , xk ⊗m)

= r
− · (x�m)

So x�m is in K(G,R,M).

Suppose that x = y (i.e. xi = yi for all i = 1, . . . , k) and m = n, then

x � m = (x1 ⊗ m, . . . , xk ⊗ m) = (y1 ⊗ n, . . . , yk ⊗ n) = y � n. Hence it is

well-defined.

(x ∗ y)�m = (x1 ∗ y1, . . . , xk ∗ yk)�m
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= ((x1 ∗ y1)⊗m, . . . , (xk ∗ yk)⊗m)

= ((x1 ⊗m) ∗ (y1 ⊗m), . . . , (xk ⊗m) ∗ (yk ⊗m))

= (x1 ⊗m, . . . , xk ⊗m) ∗ (y1 ⊗m, . . . , yk ⊗m)

= (x�m) ∗ (y �m)

x� (m ∗ n) = (x1, . . . , xk)� (m ∗ n)

= (x1 ⊗ (m ∗ n), . . . , xk ⊗ (m ∗ n))

= ((x1 ⊗m) ∗ (x1 ⊗ n), . . . , (xk ⊗m) ∗ (xk ⊗ n))

= (x1 ⊗m, . . . , xk ⊗m) ∗ (x1 ⊗ n, . . . , xk ⊗ n)

= (x�m) ∗ (x� n)

(x�m)� n = (x1 ⊗m, . . . , xk ⊗m)� n

= ((x1 ⊗m)⊗ n, . . . , (xk ⊗m)⊗ n)

= (x1 ⊗ (m⊗ n), . . . , xk ⊗ (m⊗ n))

= x� (m⊗ n)

If M has an identity 1M , that is m ⊗ 1M = m for all m ∈ M . Then

x� 1M = (x1 ⊗ 1M , . . . , xk ⊗ 1M) = (x1, . . . , xk) = x.
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Remark 4.1.12. If M is a field, then K(G,R,M) is a vector space.

Example 4.1.13. Let M = GF (4) be a Galois field. Let S ⊆ Z2 and let

G = {(1, 2), (4, 8)} be the generating set of S. Then |G| = 2, and we have

(1, 2)z1 + (4, 8)z2 = 0 for all z1, z2 ∈ Z. This implies R = {r = (−4, 1)}. So

r
+ = (0, 1) and r

− = (4, 0). If r+ ·x = r
− ·x where x = (x1, x2) is in GF (4)2,

then x2 = 4x1 = 0, and so K(G,R,GF (4)) = {(x1, x2) ∈ GF (4)2 | x2 = 0}

is a subset of GF (4)2. We claim that K(G,R,GF (4)) is a vector space, in

fact, we just need to show that K(G,R,GF (4)) is a subspace of GF (4)2. To

start with, it is clearly that (0, 0) is in K(G,R,GF (4)). Next, suppose that

x = (x1, x2) and y = (y1, y2) are in K(G,R,GF (4)), then x2 = 0 and y2 = 0,

then x2+y2 = 0, and so x+y is inK(G,R,GF (4)). Finally, let c be in GF (4),

and let x = (x1, x2) be in K(G,R,GF (4)), then x2 = 0 and cx = (cx1, cx2),

then cx2 = 0, and so cx is in K(G,R,GF (4)). Hence K(G,R,GF (4)) is a

subspace of GF (4)2.

Note that the Galois field GF (4) is isomorphic to GF (2)
�
(x2 + x+ 1),

in fact GF (2) � Z2 since GF (p) � Zp for all prime p.

Theorem 4.1.14. Let S be a finitely generated semigroup on Zn. Let

G = {g1, · · · , gl} be a set of generaters with relations generated by R =

{r1, · · · , rk}. Let M be an additive semigroup. Then there is a bijection

between hom(S,M) and K(G,R,M).
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Proof. We define a map φ : hom(S,M) → K(G,R,M). Define a function

f : S → M by f(gi) = xi. We claim that f is well-defined. Suppose that

s =
�

l

i=1 aigi and t =
�

l

i=1 bigi are in S. Let s = t. If ai = bi for all

i = 1, . . . , l, then

f(s) =
l�

i=1

aixi =
l�

i=1

bixi = f(t).

If ai = bi + zi for all i = 1, . . . , l, where z1, . . . , zl are in SpanZ(R). Then

f(s) =
l�

i=1

aixi =
l�

i=1

(bi + zi)xi =
l�

i=1

bixi +
l�

i=1

zixi =
l�

i=1

bixi = f(t).

We claim that f is in hom(S,M), i.e. to show that f is a semigroup ho-

momorphism. Let s and t are in S, then s =
�

l

i=1 aigi and t =
�

l

i=1 bigi.

So s + t =
�

l

i=1 (ai + bi)gi. This implies f(s + t) =
�

l

i=1 (ai + bi)xi =

�
l

i=1 aixi +
�

l

i=1 bixi = f(s) + f(t). Hence f is in hom(S,M).

Since R = {r1, · · · , rk} ⊆ Zm generates the integer relation between a set of

G, for any r = (z1, . . . , zl) in R, then
�

l

i=1 z
+
i
gi =

�
l

i=1 z
−
i
gi. Because

f is in hom(S,M), so r
+ · (x1, . . . , xl) =

�
l

i=1 z
+
i
xi =

�
l

i=1 z
+
i
f(gi) =

f(
�

l

i=1 z
+
i
gi) = f(

�
l

i=1 z
−
i
gi) =

�
l

i=1 z
−
i
f(gi) = r

−·(x1, . . . , xl). So (x1, . . . , xl)

is in K(G,R,M).

Define a function ψ : K(G,R,M) → hom(S,M) by ψ(x) = f for all x in
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K(G,R,M). To check that φ is surjective, and ψ is injective, i.e. φ ◦ ψ

identity function.

φ ◦ ψ(x) = φ(ψ(x)) = (f(g1), . . . , f(gl)) = (x1, . . . , xl) = x.

Proposition 4.1.15. Let S be a finitely generated semigroup on Zn. Let

G = {g1, · · · , gl} be a set of generaters with relations generated by R =

{r1, · · · , rk}. Then there are bijective between Spec(C[S]), hom(S,C) and

K(G,R,C).

Proof. The correspondence between Spec(C[Sσ]) and hom(S,C) is imme-

diate from Proposition 3.3.11. The correspondence between hom(S,C) and

K(G,R,C) is immediate from the Theorem 4.1.14.

Theorem 4.1.16. Let S be a finitely generated semigroup on Zn. Let

G = {g1, · · · , gl} and H = {h1, · · · , hd} be the different sets of the generators

of S with relations generated by R = {r1, · · · , rk}and P = {p1, · · · , pm}, re-

spectively. Then there is a linear isomorphism φ : K(G,R,R) → K(H,P,R).

Proof. Since G = {g1, · · · , gl} and H = {h1, · · · , hd} are the different sets

of the generators of S, let gi =
�

d

j=1 λijhj with nonnegative integer λij for

all i = 1, . . . , l, and let hi =
�

l

i=1 µjigi with nonnegative integer µji for all

j = 1, . . . , d. Since hom(S,R) is in bijection with K(G,R,R), let xi = f(gi)
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for all i = 1, . . . , l where f is in hom(S,R). Then
�

l

i=1 z
+
i
xi =

�
l

i=1 z
−
i
xi

for all (z1, . . . , zl) is in SpanZR since (x1, . . . , xl) is in K(G,R,R). Let yj =

�
l

i=1 µjixi for all j = 1, . . . , d. We claim that

d�

j=1

t
+
j
yj =

d�

j=1

t
−
j
yj

for all (t1, . . . , td) is in SpanZP = {(ti, . . . , td) ∈ Zd |
�

d

j=1 t
+
j
hj =

�
d

j=1 t
−
j
hj}.

Because we have hi =
�

l

i=1 µjigi with nonnegative integer µji for all j =

1, . . . , d, so this implies

d�

j=1

t
+
j
hj =

d�

j=1

t
+
j
(

l�

i=1

µjigi)

=
d�

j=1

(
l�

i=1

t
+
j
µji)gi

=
d�

j=1

(
l�

i=1

t
−
j
µji)gi

=
d�

j=1

t
−
j
hj.

Thus

d�

j=1

t
+
j
yj =

d�

j=1

t
+
j
(

l�

i=1

µjixi)

=
d�

j=1

(
l�

i=1

t
+
j
µji)xi
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=
d�

j=1

(
l�

i=1

t
−
j
µji)xi

=
d�

j=1

t
−
j
yj.

Define a function φ : K(G,R,R) → K(H,P,R) via φ(x1, . . . , xl) = (y1, . . . , yd) =

(
�

l

i=1 µ1ixi, . . . ,
�

l

i=1 µdixi). Then the function is well-defined by the above

discussion.

Because
�

l

i=1 µ1ixi, . . . , and
�

l

i=1 µdixi are linear , φ is linear map.

Example 4.1.17. Let G = {(1, 1), (4, 4)} and S = {c(1, 1) | c ∈ Z≥0}. By

example 4.1.7, we have R = {(−4, 1)}. Thus, K(G,R,R) = {(x1, x2) ∈

R2 | x2 = 4x1}. If H = {(1, 1)}, then SpanZP = {x ∈ Z | x+ · (1, 1) =

x
− · (1, 1)} = {0}, this implies P =. So we have

K(H,P,R) = {y ∈ R | x+ · y = x
− · y, x ∈ P} = R.

Then we can obtain a linear isomorphism φ : K(G,R,R) → K(H,P,R) via

φ(x1, 4x1) = x1.

Example 4.1.18. Let G = {(1, 1), (4, 4)} and S = {c(1, 1) | c ∈ Z≥0}. By

example 4.1.7, we have R = {(−4, 1)}. Thus, K(G,R,R) = {(x1, x2) ∈ R2 |

x2 = 4x1}. If H = {(5, 0), (2, 1), (1,−2)}, then SpanZP = {(x1, x2, x3) ∈

Z3 | x1(5, 1)+x2(2, 1)+x3(1,−2) = 0} = {(x1, x2, x3) ∈ Z3 | x2 = −2x1, x3 =
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−x1}, thus S = {(1,−2,−1}. So we have

K(H,P,R) = {(x1, x2, x3) ∈ R3 | (1, 0, 0) · (x1, x2, x3) = (0, 2, 1) · (x1, x2, x3)}

= {(x1, x2, x3) ∈ R3 | x1 = 2x2 + x3}.

Then the function φ : K(G,R,R) → K(H,P,R) via φ(x1, x2) = (x1 +

2x2, x2, x1) is a linear isomophism.

4.2 Tropical Toric Variety

Definition 4.2.1. Let T be a tropical semifield. Let σ be a rational poly-

hedral cone with the semigroup Sσ. Then the affine toric variety is Uσ :=

hom(Sσ,T) where hom(Sσ,T) is the semigroup homomorphisms Sσ → T.

Note that we set T∗ = T \ {−∞}.

Example 4.2.2. Let N � Z2 be a lattice with associated vector space

NR � R2, and let M be a dual lattice of N with associated vector space

MR � R2. Given a cone σ = pos{0} in NR, then its dual cone {0}∨ =

pos{(1, 0), (−1, 0), (0, 1), (0,−1)}, then S{0} = {0}∨∩M = Z≥0(1, 0)⊕Z≥0(−1, 0)⊕

Z≥0(0, 1) ⊕ Z≥0(0,−1). Because U{0} = hom(S{0},T). Define a homomor-

phism f : S{0} → T by f(1, 0) = x1, f(−1, 0) = x2, f(0, 1) = x3, and
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f(0,−1) = x4. Then x1 + x2 = 0 and x3 + x4 = 0, and so x1, x2, x3, and

x4 don’t equal −∞. So U{0} = hom(S{0},T) � (T∗)2. Hence (T∗)2 is the

2-dimensional algebraic torus over T.

Example 4.2.3. Let σ = pos{(0,−1)} in NR � R2, then the dual cone

σ
∨ = pos{(1, 0), (−1, 0), (0,−1)}, and the corresponding semigroup Sσ =

Z≥0(1, 0) ⊕ Z≥0(−1, 0) ⊕ Z≥0(0,−1). Let f be in hom(Sσ,T). Suppose

that f(1, 0) = x1, f(−1, 0) = x2, and f(0,−1) = x3, then 0 = f(0, 0) =

f(0, 1) + f(0,−1) = f(0, 1) ⊗ f(0,−1) = x1 ⊗ x2 = x1 + x2. Hence the

corresponding affine toric variety is Uσ = hom(Sσ,T) = R×R.

Proposition 4.2.4. If τ ⊂ σ is a face of a cone σ, then we obtain the

embedding hom(Sτ ,T) = Uτ �→ Uσ = hom(Sσ,T).

Proof. Because τ ⊂ σ is a face of a cone σ, so σ
∨ is a subset of τ∨. Since

Sσ = σ
∨ ∩M is a subset of Sτ = τ

∨ ∩M , we have the embedding Sσ �→ Sτ .

Because Uτ = hom(Sτ ,T) and Uσ = hom(Sσ,T), so hom(Sτ ,T) = Uτ �→

Uσ = hom(Sσ,T). Note that we have the following commutative diagram:

Sσ

� � h ��

f◦h

��Sτ

f
�� T

Definition 4.2.5. Let F be a rational fan. Then the tropical toric variety
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XF (T) is defined as the quotient

XF (T) :=
�

σ∈F

Uσ/∼

Let τ and σ be in F . Suppose that A and B are in Uτ and Uσ respectively.

Since τ ∩σ is a face of τ and σ (because F is a fan), we have two embedding

h1 : Uτ∩σ �→ Uτ and h2 : Uτ∩σ �→ Uσ. A ∼ B if and only if h1 ◦ h−1
2 (B) = A.

Note that we have the following commutative diagram:

Uτ∩σ ⊂
h2
> Uσ

Uτ

h1

∨

∩

h1◦h−1
2<

Example 4.2.6. Let F = {{0} = σ0,R≥0 = pos(1) = σ1} be in NR �

R. The dual cone σ
∨
0 = {v ∈ R | v · 0 ≥ 0} = R. So the semigroup

Sσ0 = σ
∨
0 ∩M = Z≥0(1) ⊕ Z≥0(−1), and thus the affine toric variety Uσ0 =

hom(Sσ0 ,T) = R.

The dual cone σ
∨
1 = {v ∈ R | v · u ≥ 0, ∀u ∈ σ1} = pos{1} � R≥0. So

the semigroup Sσ1 = σ
∨
1 ∩M = Z≥0. Since we take f(0) = 0 and f(1) = x1

where f is in hom(Sσ1 ,T), the affine toric variety Uσ1 = hom(Sσ1 ,T) � T.

Hence XF (T) = (Uσ0

�
Uσ1)/∼= (R

�
T)/∼= T
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Definition 4.2.7. Let XF (T) be a tropical toric variety. A point p is said

to be regular or smooth in XF (T) if there is a unimodular cone σ in F such

that p is in Uσ. A tropical toric variety XF (T) is called regular or smooth if

all points of XF (T) are regular or smooth. A tropical toric variety XF (T) is

called singular if XF (T) is not regular.

Definition 4.2.8. Let F be fan in NR. A set ∆ is called a subfan of F if ∆

is a subset of F and is also a fan.

Definition 4.2.9. Let the lattice N = Ze1 ⊕ · · · ⊕ Zen, and let another

lattice N
� = Ze1 ⊕ · · · ⊕ Zem. Let F be a fan in NR, and let ∆ be another

fan in N
�. Let φ : NR → N

�
R be a linear map such that φ(N) ⊆ N

� and

there is a cone σ
� in ∆ containing φ(σ) for all cone σ in F . Then the map

φ : F → ∆ is said a map of fans.

Theorem 4.2.10. Let N � Zn and N
� � Zm be two different lattice, and

let M = hom(N,Z) and M
� = hom(N �

,Z) be the dual lattice. Let F be a

fan in NR and let ∆ be another fan in N
�
R. Let φ : F → ∆ be a map of fans.

Then φ extends to a continuous map φ : XF (T) → X∆(T).

Proof. Since φ : F → ∆ is a map of fans, there is a cone σ
� in ∆ such that

φ(σ) ⊂ σ
�. Let u be in Sσ� . Then u is in hom(N �

,Z) and is in σ
�∨, and thus

we have the map u : N � → Z via u(n�) =< u, n
�
>. Since φ : F → ∆ is a
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map of fans, φ(N) ⊂ N
� u �� Z . Let µ : N → Z via µ(n) =< u, φ(n) >,

then µ is in hom(N,Z). Since φ(σ) is a subset of σ�, φ(n) is in σ
� for all n in

σ. Since u is in σ
�∨, < u, φ(n) >≥ 0, and this implies µ is in σ

∨. So µ is in

σ
∨ ∩ hom(N,Z) = Sσ. Therefore, we obtain a map Sσ� → Sσ, and thus have

a map Uσ → Uσ� . And we have the following commutative diagram:

Uσ1 <
⊃ Uσ1∩σ2

⊂ > Uσ2

Uσ
�
1

∨
< ⊃ Uσ

�
1∩σ�

2

∨
⊂ > Uσ

�
2

∨

Hence XF (T) → X∆(T).

Definition 4.2.11. For all r in Z, we define the tropical Hirzebruch surface

Hr to be

THr := {([x0 : x1], [y0 : y1 : y2]) ∈ TP1 × TP2 | rx0 + y0 = rx1 + y1}.

For more information on tropical Hirzebruch surfaces, see [3] § 2.
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Figure 4.1: the fan ∆

Figure 4.2: the polytope P

4.3 Smooth two-dimensional tropical toric Fano

varieties

In this section, we know that there are only five smooth Fano polytopes

in R2 up to the action of GL(2,Z), so I will calculate these cases of smooth

two-dimensional tropical toric Fano varieties.

Example 4.3.1. Given the lattice N = Z(1, 0) ⊕ Z(0, 1) � Z2, then NR =

N ⊗R � R2, the dual lattice M � Z2 and MR = M ⊗R.

Let the fan ∆ in NR. Suppose that the fan ∆ (the figure 4.1 ) has

σ1 = pos{(1, 0), (0, 1)}, σ2 = pos{(−1, 0), (0, 1)},

σ3 = pos{(−1, 0), (0,−1)}, σ4 = pos{(1, 0), (0,−1)},

72



together with

τ1 = σ1 ∩ σ2 = pos{(0, 1)}, τ2 = σ2 ∩ σ3 = pos{(−1, 0)},

τ3 = σ3 ∩ σ4 = pos{(0,−1)}, τ4 = σ4 ∩ σ1 = pos{(1, 0)},

and the origin. Then the dual cones

σ
∨
1 = pos{(1, 0), (0, 1)}, σ

∨
2 = pos{(−1, 0), (0, 1)},

σ
∨
3 = pos{(−1, 0), (0,−1)}, σ

∨
4 = pos{(1, 0), (0,−1)}.

Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(1, 0)⊕ Z≥0(0, 1),

Sσ2 = σ
∨
2 ∩M = Z≥0(−1, 0)⊕ Z≥0(0, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(−1, 0)⊕ Z≥0(0,−1),

Sσ4 = σ
∨
4 ∩M = Z≥0(1, 0)⊕ Z≥0(0,−1),
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together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 0)⊕ Z≥0(−1, 0)⊕ Z≥0(0, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(0, 1)⊕ Z≥0(0,−1)⊕ Z≥0(−1, 0),

Sτ3 = Sσ3 + Sσ4 = Z≥0(1, 0)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1),

Sτ4 = Sσ4 + Sσ1 = Z≥0(0, 1)⊕ Z≥0(0,−1)⊕ Z≥0(1, 0),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).

Let fi be in Uσi = hom(Sσi ,T) for all i = 1, 2, 3, 4, then we have some

maps

f1 : Sσ1 → T via f1(1, 0) = x and f1(0, 1) = y,

f2 : Sσ2 → T via f2(−1, 0) = −x and f2(0, 1) = y,

f3 : Sσ3 → T via f3(−1, 0) = −x and f3(0,−1) = −y,

f4 : Sσ4 → T via f4(1, 0) = x and f4(0,−1) = −y.

Therefore, the affine toric varieties

Uσ1 = hom(Sσ1 ,T) = T
2
, Uσ2 = hom(Sσ2 ,T) = T

2
,
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Uσ3 = hom(Sσ3 ,T) = T
2
, Uσ4 = hom(Sσ4 ,T) = T

2
,

together with

Uτ1 = hom(Sτ1 ,T) = R× T, Uτ2 = hom(Sτ2 ,T) = R× T,

Uτ3 = hom(Sτ3 ,T) = R× T, Uτ4 = hom(Sτ4 ,T) = R× T,

U{0} = hom(S{0},T) = R
2
.

The gluing of the affine toric varieties Uσ1 and Uσ2 along their common

subset Uτ1 gives TP1 × T with coordinates ((x0 : x1), y) where x = x1 − x0.

The gluing of the affine toric varieties Uσ2 and Uσ3 along their common subset

Uτ2 gives T × TP1 with coordinates (−x, (y0 : y1)) where y = y1 − y0. The

gluing of the affine toric varieties Uσ3 and Uσ4 along their common subset

Uτ3 gives TP1 × T with coordinates ((x0 : x1),−y) where x = x1 − x0. The

gluing of the affine toric varieties Uσ4 and Uσ1 along their common subset

Uτ4 gives T × TP1 with coordinates (x, (y0 : y1)) where y = y1 − y0. The
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following commutative diagram:

Uσ1 <
⊃ Uτ1

⊂ > Uσ2

Uτ4

∪

∧

Uτ2

∪

∧

Uσ4

∨

∩

< ⊃ Uτ3
⊂ > Uσ3

∨

∩

Hence the gluing of these two gives the tropical toric variety

X∆(T) = (
�

σ∈∆

Uσ)/∼= TP1 × TP1
.

The polytopes P = conv{0, (1, 0), (0, 1), (−1, 0), (0,−1)} (the figure 4.2)

in NR.Since conv{(1, 0), (0, 1)}, conv{(0, 1), (−1, 0)}, conv{(−1, 0), (0,−1)},

conv{(0,−1), (1, 0)} are the facets of P , and they are the convex hull of a

basis of N , XP is a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.2. Given the lattice N � Z2, then NR = N ⊗ R � R2, the

dual lattice M � Z2 and MR = M ⊗R.

Let the fan ∆ in NR. Suppose that the fan ∆ (the figure 4.3) has

σ1 = pos{(1, 0), (0, 1)}, σ2 = pos{(−1,−1), (0, 1)}, σ3 = pos{(1, 0), (−1,−1)},

76



Figure 4.3: the fan ∆

Figure 4.4: the polytope P

together with

τ1 = σ1 ∩ σ2 = pos{(0, 1)}, τ2 = σ2 ∩ σ3 = pos{(−1,−1)},

τ3 = σ3 ∩ σ1 = pos{(1, 0)}, and the origin.

Then the dual cones

σ
∨
1 = pos{(1, 0), (0, 1)}, σ∨

2 = pos{(−1, 0), (−1, 1)}, σ∨
3 = pos{(1,−1), (0,−1)}.

Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(1, 0)⊕ Z≥0(0, 1),
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Sσ2 = σ
∨
2 ∩M = Z≥0(−1, 0)⊕ Z≥0(−1, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(1,−1)⊕ Z≥0(0,−1),

together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 0)⊕ Z≥0(−1, 0)⊕ Z≥0(0, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(1,−1)⊕ Z≥0(−1, 1)⊕ Z≥0(−1,−1),

Sτ3 = Sσ3 + Sσ1 = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).

Let fi be in Uσi = hom(Sσi ,T) for all i = 1, 2, 3, then we have some maps

f1 : Sσ1 → T via f1(1, 0) = x and f1(0, 1) = y,

f2 : Sσ2 → T via f2(−1, 0) = −x and f2(−1, 1) = −x+ y,

f3 : Sσ3 → T via f3(1,−1) = x− y and f3(0,−1) = −y,

Therefore, the affine toric variety

Uσ1 = hom(Sσ1 ,T) = T
2
, Uσ2 = hom(Sσ2 ,T) = T

2
,
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Uσ3 = hom(Sσ3 ,T) = T
2
,

together with

Uτ1 = hom(Sτ1 ,T) = R× T, Uτ2 = hom(Sτ2 ,T) = R× T,

Uτ3 = hom(Sτ3 ,T) = R× T, U{0} = hom(S{0},T) = R
2
.

The gluing of the affine toric varieties Uσ1 and Uσ2 along their common

subset Uτ1 gives TP2 with coordinates (x0 : x1 : x2) where x = x1 − x0

and y = x2 − x0. The gluing of the affine toric varieties Uσ2 and Uσ3 along

their common subset Uτ2 gives TP2 with coordinates (x0 : x1 : x2) where

−x+ y = x1 − x0 and −x = x2 − x0. The gluing of the affine toric varieties

Uσ3 and Uσ4 along their common subset Uτ3 gives TP2 with coordinates

(x0 : x1 : x2) where y = x1 − x0 and x = x2 − x0.

The following commutative diagram:

Uσ1 <
⊃ Uτ1

⊂ > Uσ2

Uτ3

<

⊃

Uτ2

∪

∧

Uσ3

∨

∩
⊂

>
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Hence the gluing of these two gives the tropical toric variety

X∆(T) = (
�

σ∈∆

Uσ)/∼= TP2
.

The polytopes P = conv{0, (1, 0), (0, 1), (−1,−1)} (the figure 4.4) in

NR.Since conv{(1, 0), (0, 1)}, conv{(0, 1), (−1,−1)}, conv{(−1,−1), (1, 0)}

are the facets of P , and they are the convex hull of a basis of N , XP is

a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.3. Given the lattice N � Z2, then NR = N ⊗ R � R2, the

dual lattice M � Z2 and MR = M ⊗R.

Let the fan ∆ in NR. Suppose that the fan ∆ (the figure 4.5) has

σ1 = pos{(1, 0), (1, 1)}, σ2 = pos{(1, 1), (0, 1)},

σ3 = pos{(0, 1), (−1,−1)}, σ4 = pos{(−1,−1), (1, 0)},

together with

τ1 = σ1 ∩ σ2 = pos{(1, 1)}, τ2 = σ2 ∩ σ3 = pos{(0, 1)},

τ3 = σ3 ∩ σ4 = pos{(−1,−1)}, τ4 = σ4 ∩ σ1 = pos{(1, 0)},
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Figure 4.5: the fan ∆

Figure 4.6: the polytope P

and the origin. Then the dual cones

σ
∨
1 = pos{(−1,−1), (0, 1)}, σ

∨
2 = pos{(1, 0), (−1, 1)},

σ
∨
3 = pos{(−1, 0), (−1, 1)}, σ

∨
4 = pos{(0,−1), (1,−1)}.

Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(0, 1)⊕ Z≥0(1,−1),

Sσ2 = σ
∨
2 ∩M = Z≥0(1, 0)⊕ Z≥0(−1, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(−1, 0)⊕ Z≥0(−1, 1),

Sσ4 = σ
∨
4 ∩M = Z≥0(0,−1)⊕ Z≥0(1,−1),

81



together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(0, 1)⊕ Z≥0(1, 0)⊕ Z≥0(−1, 0),

Sτ3 = Sσ3 + Sσ4 = Z≥0(−1,−1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ4 = Sσ4 + Sσ1 = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).

Let fi be in Uσi = hom(Sσi ,T) for all i = 1, 2, 3, 4, then we have some

maps

f1 : Sσ1 → T via f1(0, 1) = y and f1(1,−1) = x− y,

f2 : Sσ2 → T via f2(1, 0) = x and f2(−1, 1) = −x+ y,

f3 : Sσ3 → T via f3(−1, 0) = −x and f3(−1, 1) = −x+ y,

f4 : Sσ4 → T via f4(0,−1) = −y and f4(1,−1) = x− y.

Therefore, the affine toric variety

Uσ1 = hom(Sσ1 ,T) = T
2
, Uσ2 = hom(Sσ2 ,T) = T

2
,
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Uσ3 = hom(Sσ3 ,T) = T
2
, Uσ4 = hom(Sσ4 ,T) = T

2
,

together with

Uτ1 = hom(Sτ1 ,T) = R× T, Uτ2 = hom(Sτ2 ,T) = R× T,

Uτ3 = hom(Sτ3 ,T) = R× T, Uτ4 = hom(Sτ4 ,T) = R× T,

U{0} = hom(S{0},T) = R
2
.

The gluing of the affine toric varieties Uσ2 and Uσ3 along their common

subset Uτ2 gives TP1 × T with coordinates ((x0 : x1),−x + y) where x =

x0 − x1. The gluing of the affine toric varieties Uσ4 and Uσ1 along their

common subset Uτ4 gives TP1 × T with coordinates ((y0 : y1), x − y) where

y = y0 − y1.

The two copies of TP1×T are glued along their second coordinates gives

TP1×TP2 with coordinates ([z0 : z1], [x0−x1 : y0− y1 : 0]) = ([z0 : z1], [x0−

x1 : y0 − y1 : 0]) where x− y = z0 − z1. Since z0 − z1 = (x0 − x1)− (y0 − y1),

(x0 − x1)− z0 = (y0 − y1)− z1. Hence the toric variety

X∆(T) =
(
�

σ∈∆ Uσ)
�
∼

= {([z0 : z1], [x0 − x1 : y0 − y1 : 0]) ∈ TP1 × TP2 | (x0 − x1)− z0 =

83



(y0 − y1)− z1},

= {([z0 : z1], [x0 + y1 : y0 + x1 : x1 + y1]) ∈ TP1 × TP2 | (x0 − x1)−

z0 = (y0 − y1)− z1},

= TH−1

where TH−1 is a tropical Hirzebruch surface.

The following commutative diagram:

Uσ2 <
⊃ Uτ2

⊂ > Uσ3

Uτ1

∪

∧

Uτ3

∪

∧

Uσ1

∨

∩

< ⊃ Uτ4
⊂ > Uσ4

∨

∩

The polytopes P = conv{0, (1, 0), (1, 1), (0, 1), (−1,−1)} (the figure 4.6)

in NR.Since conv{(1, 0), (1, 1)}, conv{(0, 1), (1, 1)}, conv{(0, 1), (−1,−1)},

conv{(−1,−1), (1, 0)} are the facets of P , and they are the convex hull of a

basis of N , XP is a smooth Fano polytope (by Theorem 3.4.2).

Example 4.3.4. Given the lattice N � Z2, then NR = N ⊗ R � R2, the

dual lattice M � Z2 and MR = M ⊗R.
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Let the fan ∆ in NR. Suppose that the fan ∆ (the figure 4.7) has

σ1 = pos{(1, 0), (1, 1)}, σ2 = pos{(1, 1), (0, 1)},

σ3 = pos{(0, 1), (−1,−1)}, σ4 = pos{(−1,−1), (0,−1)},

σ5 = pos{(0,−1), (1, 0)},

together with

τ1 = σ1 ∩ σ2 = pos{(1, 1)}, τ2 = σ2 ∩ σ3 = pos{(0, 1)},

τ3 = σ3 ∩ σ4 = pos{(−1,−1)}, τ4 = σ4 ∩ σ5 = pos{(0,−1)},

τ5 = σ5 ∩ σ1 = pos{(1, 0)},

and the origin. Then the dual cones

σ
∨
1 = pos{(1,−1), (0, 1)}, σ

∨
2 = pos{(1, 0), (−1, 1)},

σ
∨
3 = pos{(−1, 0), (−1, 1)}, σ

∨
4 = pos{(−1, 0), (1,−1)},

σ
∨
5 = pos{(0,−1), (1, 0)}.
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Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(0, 1)⊕ Z≥0(1,−1),

Sσ2 = σ
∨
2 ∩M = Z≥0(1, 0)⊕ Z≥0(−1, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(−1, 0)⊕ Z≥0(−1, 1),

Sσ4 = σ
∨
4 ∩M = Z≥0(−1, 0)⊕ Z≥0(1,−1),

Sσ5 = σ
∨
5 ∩M = Z≥0(0,−1)⊕ Z≥0(1, 0),

together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(0, 1)⊕ Z≥0(1, 0)⊕ Z≥0(−1, 0),

Sτ3 = Sσ3 + Sσ4 = Z≥0(−1,−1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ4 = Sσ4 + Sσ5 = Z≥0(0,−1)⊕ Z≥0(1, 0)⊕ Z≥0(−1, 0),

Sτ5 = Sσ5 + Sσ1 = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).
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Therefore, the affine toric variety

Uσ1 = hom(Sσ1 ,T) = T
2
, Uσ2 = hom(Sσ2 ,T) = T

2
,

Uσ3 = hom(Sσ3 ,T) = T
2
, Uσ4 = hom(Sσ4 ,T) = T

2
,

Uσ5 = hom(Sσ5 ,T) = T
2
,

together with

Uτ1 = hom(Sτ1 ,T) = R× T, Uτ2 = hom(Sτ2 ,T) = R× T,

Uτ3 = hom(Sτ3 ,T) = R× T, Uτ4 = hom(Sτ4 ,T) = R× T,

Uτ5 = hom(Sτ5 ,T) = R× T, U{0} = hom(S{0},T) = R
2
.

The gluing of the affine toric varieties Uσ2 and Uσ3 along their common

subset Uτ2 gives TP
1×T with coordinates ([x0 : x1],−x+y) where x = x0−x1.

The gluing of the affine toric varieties Uσ3 and Uσ4 along their common subset

Uτ3 gives TP1 × T with coordinates (−x, [z0 : z1]) where −x + y = z1 − z0.

The two copies of TP1×T are glued along their coordinates gives TP1×TP1

with coordinates ([x0 : x1], [z0 : z1]). Since we have some embedding h44 :

Uτ4 �→ Uσ4 via h44(x0 − x1, x1 − x0, x1 − x0 + z0 − z1) = (0, x1 − x0, z0 − z1)
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and h45 : Uτ4 �→ Uσ5 via h45(x0 − x1, x1 − x0, x1 − x0 + z0 − z1) = (x0 −

x1, 0, x1−x0+z0−z1), we have tropical isomorphism h45◦h−1
44 : Uσ4 → Uσ1 via

h45◦h−1
44 (0, x1−x0, z0−z1) = (x0−x1, 0, x1−x0+z0−z1). Similarly, h51◦h−1

55 :

Uσ5 → Uσ1 via h51◦h−1
55 (x0−x1, 0, x1−x0+z0−z1) = (z0−z1, x0−x1+z1−z0, 0),

and h12 ◦ h
−1
11 : Uσ1 → Uσ2 via h12 ◦ h

−1
11 (z0 − z1, x0 − x1 + z1 − z0, 0) =

(0, z1 − z0, x0 − x1). Hence the toric variety

X∆(T) =
(
�

σ∈∆ Uσ)
�
∼

= {([x0 : x1], [z0 : z1], [a : b : c]) ∈ TP1×TP1×TP2 | a+x1 = b+x0, a+z1 = c+z0},

that is, X∆(T) is the blow up of TP2 at the two points [0 : −∞ : −∞] and

[−∞ : 0 : −∞].

The following commutative diagram:

Uσ1 <
⊃ Uτ1

⊂ > Uσ2

Uτ5

⊂

>

Uτ2

∪

∧

Uσ5 <
⊃

<

⊃

Uτ4
⊂ > Uσ4 <

⊃ Uτ3
⊂ > Uσ3

∨

∩

The polytopes P = conv{0, (1, 0), (1, 1), (0, 1), (−1,−1), (0,−1)} (the

figure 4.8) inNR.Since conv{(1, 0), (1, 1)}, conv{(0, 1), (1, 1)}, conv{(0, 1), (−1,−1)},
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Figure 4.7: the fan ∆

Figure 4.8: the polytope P

conv{(−1,−1), (0,−1)}, conv{(0,−1), (1, 0)} are the facets of P , and they

are the convex hull of a basis of N , XP is a smooth Fano polytope (by

Theorem 3.4.2).

Example 4.3.5. Given the lattice N � Z2, then NR = N ⊗ R � R2, the

dual lattice M � Z2 and MR = M ⊗R.

Let the fan ∆ in NR. Suppose that the fan ∆ (the figure 4.9) has

σ1 = pos{(1, 0), (1, 1)}, σ2 = pos{(1, 1), (0, 1)},

σ3 = pos{(0, 1), (−1, 0)}, σ4 = pos{(−1, 0), (−1,−1)},

σ5 = pos{(−1,−1), (0,−1)}, σ6 = pos{(0,−1), (1, 0)},
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Figure 4.9: the fan ∆

Figure 4.10: the polytope P

together with

τ1 = σ1 ∩ σ2 = pos{(1, 1)}, τ2 = σ2 ∩ σ3 = pos{(0, 1)},

τ3 = σ3 ∩ σ4 = pos{(−1, 0)}, τ4 = σ4 ∩ σ5 = pos{(−1,−1)},

τ5 = σ5 ∩ σ6 = pos{(0,−1)}, τ6 = σ6 ∩ σ1 = pos{(1, 0)},

and the origin. Then the dual cones

σ
∨
1 = pos{(−1,−1), (0, 1)}, σ

∨
2 = pos{(1, 0), (−1, 1)},

σ
∨
3 = pos{(−1, 0), (0, 1)}, σ

∨
4 = pos{(−1, 1), (0,−1)},

σ
∨
5 = pos{(−1, 0), (1,−1)}, σ

∨
6 = pos{(0,−1), (1, 0)}.
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Moreover, the corresponding semigroups

Sσ1 = σ
∨
1 ∩M = Z≥0(0, 1)⊕ Z≥0(1,−1),

Sσ2 = σ
∨
2 ∩M = Z≥0(1, 0)⊕ Z≥0(−1, 1),

Sσ3 = σ
∨
3 ∩M = Z≥0(−1, 0)⊕ Z≥0(0, 1),

Sσ4 = σ
∨
4 ∩M = Z≥0(−1, 1)⊕ Z≥0(0,−1),

Sσ5 = σ
∨
5 ∩M = Z≥0(−1, 0)⊕ Z≥0(1,−1),

Sσ6 = σ
∨
6 ∩M = Z≥0(0,−1)⊕ Z≥0(1, 0),

together with

Sτ1 = Sσ1 + Sσ2 = Z≥0(1, 1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ2 = Sσ2 + Sσ3 = Z≥0(0, 1)⊕ Z≥0(1, 0)⊕ Z≥0(−1, 0),

Sτ3 = Sσ3 + Sσ4 = Z≥0(−1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

Sτ4 = Sσ4 + Sσ5 = Z≥0(−1,−1)⊕ Z≥0(1,−1)⊕ Z≥0(−1, 1),

Sτ5 = Sσ5 + Sσ6 = Z≥0(0,−1)⊕ Z≥0(1, 0)⊕ Z≥0(−1, 0),
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Sτ6 = Sσ6 + Sσ1 = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(0,−1),

S{0} = Z≥0(1, 0)⊕ Z≥0(0, 1)⊕ Z≥0(−1, 0)⊕ Z≥0(0,−1).

Therefore, the affine toric variety

Uσ1 = hom(Sσ1 ,T) = T
2
, Uσ2 = hom(Sσ2 ,T) = T

2
,

Uσ3 = hom(Sσ3 ,T) = T
2
, Uσ4 = hom(Sσ4 ,T) = T

2
,

Uσ5 = hom(Sσ5 ,T) = T
2
, Uσ6 = hom(Sσ6 ,T) = T

2
,

together with

Uτ1 = hom(Sτ1 ,T) = R× T, Uτ2 = hom(Sτ2 ,T) = R× T,

Uτ3 = hom(Sτ3 ,T) = R× T, Uτ4 = hom(Sτ4 ,T) = R× T,

Uτ5 = hom(Sτ5 ,T) = R× T, Uτ6 = hom(Sτ6 ,T) = R× T,

U{0} = hom(S{0},T) = R
2
.

Let fi be in Uσi = hom(Sσi ,T) for all i = 1, 2, 3, 4, 5, 6, then we have
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some maps

f1 : Sσ1 → T via f1(0, 1) = y and f1(1,−1) = x− y,

f2 : Sσ2 → T via f2(1, 0) = x and f2(−1, 1) = −x+ y,

f3 : Sσ3 → T via f3(−1, 0) = −x and f3(0, 1) = y,

f4 : Sσ4 → T via f4(0,−1) = −y and f4(1,−1) = −x+ y,

f5 : Sσ4 → T via f4(−1, 0) = −x and f4(1,−1) = x− y,

f5 : Sσ4 → T via f4(0,−1) = −y and f4(1, 0) = x.

Since we have some embedding h11 : Uτ1 �→ Uσ1 via h11(x + y, x −

y,−x+ y) = (0, x− y, y) and h12 : Uτ1 �→ Uσ2 via h12(x+ y, x− y,−x+ y) =

(x,−x + y, 0), we have tropical isomorphism h12 ◦ h
−1
11 : Uσ1 → Uσ2 via

h12 ◦ h
−1
11 (0, x − y, y) = (x,−x + y, 0). Similarly, h23 ◦ h

−1
22 : Uσ2 → Uσ3

via h23 ◦ h
−1
22 (x,−x + y, 0) = (−x, 0, y), and h34 ◦ h

−1
33 : Uσ3 → Uσ4 via

h34◦h−1
33 (−x, 0, y) = (0,−x+y,−y), h45◦h−1

44 : Uσ4 → Uσ5 via h45◦h−1
44 (0,−x+

y,−y) = (−x, x − y, 0), h56 ◦ h−1
55 : Uσ5 → Uσ6 via h56 ◦ h−1

55 (−x, x − y, 0) =

(x, 0,−y), h61◦h−1
66 : Uσ6 → Uσ1 via h61◦h−1

66 (x, 0,−y) = (0, x−y, y). Consider

the product TP1×TP1×TP1×TP2 with homogeneous coordinates [x0 : x1],

93



[z0 : z1],[y0 : y1] on respective TP1 and homogeneous coordinate [a : b : c] on

TP2. We set x = x0 − x1, x − y = z0 − z1, y = y0 − y1. Hence the toric

variety

X∆(T) =
(
�

σ∈∆ Uσ)
�
∼

= {([x0 : x1], [z0 : z1], [y0, y1], [a : b : c]) ∈ TP1 × TP1 × TP1

× TP2 | b+ x1 = c+ x0, a+ z1 = b+ z0, c+ y1 = a+ y0},

that is, X∆(T) is the blow up of TP2 at the three points [0 : −∞ : −∞],

[−∞ : 0 : −∞], and [−∞ : −∞ : 0].

The polytopes P = conv{0, (1, 0), (1, 1), (0, 1), (0,−1), (−1,−1), (0,−1)}

(the figure 4.10 ) in NR. Since conv{(1, 0), (1, 1)}, conv{(0, 1), (1, 1)},

conv{(0, 1), (−1, 0)}, conv{(−1, 0), (−1,−1)}, conv{(−1,−1), (0,−1)},

conv{(0,−1), (1, 0)} are the facets of P , and they are the convex hull of a

basis of N , XP is a smooth Fano polytope (by Theorem 3.4.2).
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