Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/54407
|
Title: | 電路設計中電流值之罕見事件的統計估計探討 A study of statistical method on estimating rare event in IC Current |
Authors: | 彭亞凌 Peng, Ya Ling |
Contributors: | 余清祥 蔡紋琦 Yue, Jack C. Tsai, Wen Chi 彭亞凌 Peng, Ya Ling |
Keywords: | 罕見事件 電流估計 加權迴歸 變數轉換 極值理論 Rare Event Estimating Current Weighted Least Squares Data Transformation Extreme Value Theory |
Date: | 2011 |
Issue Date: | 2012-10-30 10:58:18 (UTC+8) |
Abstract: | 距離期望值4至6倍標準差以外的罕見機率電流值,是當前積體電路設計品質的關鍵之一,但隨著精確度的標準提升,實務上以蒙地卡羅方法模擬電路資料,因曠日廢時愈發不可行,而過去透過參數模型外插估計或迴歸分析方法,也因變數蒐集不易、操作電壓減小使得電流值尾端估計產生偏差,上述原因使得尾端電流值估計困難。因此本文引進統計方法改善罕見機率電流值的估計:先以Box-Cox轉換觀察值為近似常態,改善尾端分配值的估計,再以加權迴歸方法估計罕見電流值,其中迴歸解釋變數為Log或Z分數轉換的經驗累積機率,而加權方法採用Down-weight加重極值樣本資訊的重要性,此外,本研究也考慮能蒐集完整變數的情況,改以電路資料作為解釋變數進行加權迴歸。另一方面,本研究也採用極值理論作為估計方法。 本文先以電腦模擬評估各方法的優劣,假設母體分配為常態、T分配、Gamma分配,以均方誤差作為衡量指標,模擬結果驗證了加權迴歸方法的可行性。而後參考模擬結果決定篩選樣本方式進行實證研究,資料來源為新竹某科技公司,實證結果顯示加權迴歸配合Box-Cox轉換能以十萬筆樣本數,準確估計左、右尾機率10^(-4) 、10^(-5)、10^(-6)、10^(-7)極端電流值。其中右尾部分的加權迴歸解釋變數採用對數轉換,而左尾部分的加權迴歸解釋變數採用Z分數轉換,估計結果較為準確,又若能蒐集電路資訊作為解釋變數,在左尾部份可以有最準確的估計結果;而篩選樣本尾端1%和整筆資料的方式對於不同方法的估計準確度各有利弊,皆可考慮。另外,1%門檻值比例的極值理論能穩定且中等程度的估計不同電壓下的電流值,且有短程估計最準的趨勢。 To obtain the tail distribution of current beyond 4 to 6 sigma is nowadays a key issue in integrated circuit (IC) design and computer simulation is a popular tool to estimate the tail values. Since creating rare events via simulation is time-consuming, often the linear extrapolation methods (such as regression analysis) are applied to enhance efficiency. However, it is shown from past work that the tail values is likely to behave differently if the operating voltage is getting lower. In this study, a statistical method is introduced to deal with the lower voltage case. The data are evaluated via the Box-Cox (or power) transformation and see if they need to be transformed into normally distributed data, following by weighted regression to extrapolate the tail values. In specific, the independent variable is the empirical CDF with logarithm or z-score transformation, and the weight is down-weight in order to emphasize the information of extreme values observations. In addition to regression analysis, Extreme Value Theory (EVT) is also adopted in the research. The computer simulation and data sets from a famous IC manufacturer in Hsinchu are used to evaluate the proposed method, with respect to mean squared error. In computer simulation, the data are assumed to be generated from normal, student t, or Gamma distribution. For empirical data, there are 10^8 observations and tail values with probabilities 10^(-4),10^(-5),10^(-6),10^(-7) are set to be the study goal given that only 10^5 observations are available. Comparing to the traditional methods and EVT, the proposed method has the best performance in estimating the tail probabilities. If the IC current is produced from regression equation and the information of independent variables can be provided, using the weighted regression can reach the best estimation for the left-tailed rare events. Also, using EVT can also produce accurate estimates provided that the tail probabilities to be estimated and the observations available are on the similar scale, e.g., probabilities 10^(-5)~10^(-7) vs.10^5 observations. |
Reference: | Abu-Rahma, M., Chen,Y., Deshmukh, P., Gao, Y., Garg, M., Ge, L., Han, M., Liu, P., Sani, M., Sy, W., Terzioglu, E., Yang, S., Yeap, G., Yoon, S.S., and Wang, J., (2011). Non-Gaussian distribution of SRAM read current and design impact to low power memory using Voltage Acceleration Method, Symposium on VLSI Technology (VLSIT), pp.220-221, 14-16 June 2011
Amirante, E., Einfeld, J., Fischer, T., Huber, P., Nirschl, T., Olbrich, A., Otte, C., Ostermayr, M., and Schmitt-Landsiedel, D., (2007). A 1 Mbit SRAM test structure to analyze local mismatch beyond 5 sigma variation, IEEE International Conference on Microelectronic Test Structures, (ICMTS `07), pp.63-66, 19-22 March 2007.
Balkema, A.A., and de Haan, L., (1974). Residual life time at great age, Annals of Probability, 2, pp.792-804.
Box, G.E.P., and Cox, D.R. (1964). An analysis of transformations, (with discussion), Journal of the Royal Statistical Society, series B, 26, pp.211-246.
Casella, G., and Berger, R., (2002). Statistical Inference. Duxbury, 2nd Ed.
Chiao C.H., Chang, H.W., Chou Y.F., Kwai, D.M., and Liao H.J., (2000). Detection of SRAM cell stability by lowering array supply voltage, Ninth Asian Test Symposium (ATS`00), pp.268.
Croon, J.A., Di Bucchianico, A., Doorn, T.S., ter Maten, E.J.W., and Wittich, O., (2008). Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield, Solid-State Circuits Conference (ESSCIRC) 34th European, pp.230-233, 15-19 Sept. 2008.
Donald W.K. A. (2004). The Block-Block Bootstrap:Improved Asymptotic Refinements, Econometrica, vol. 72, No. 3, pp.673-700.
Fisher, R., and Tippett, L.H.C., (1928). Limiting forms of the frequency distribution of largest or smallest member of a sample, Proceedings of the Cambridge philosophical society, vol. 24, pp180-190.
Frey, R., and McNeil, A. J., (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3-4), pp.271-300.
Gnedenko, B.V., (1943). Sur la distribution limite du terme maximum d`une serie aleatoire, Annals of Mathematics, 44, pp.423-453.
Gilli, M., and Këllezi, E., (2006). An Application of Extreme Value Theory for Measuring Financial Risk, Computational Economics 27.2-3 (2006), pp.207-228.
Hardy, M.R., Li, J.S.H., and Tan, K.S., (2008). Threshold life tables and their applications, North American Actuarial Journal,12, pp. 99-115.
Hsiao, C.H., and Kwai, D.M. (2005). Measurement and characterization of 6T SRAM cell current, Proc. of the 2005 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT`05), pp.140-145, Aug. 2005
Jenkinson, A.F., (1955). The frequency distribution of the annual maximum (minimum) values of meteorological events, Quarterly Journal of the Royal Meteorological Society, 81, pp.158-172.
Marimoutou, V., Raggad, B., and Trabelsi, A., (2006). Extreme Value Theory and Value at Risk: Application to Oil Market, GREQAM Working Paper,38
Pickands, J.I., (1975). Statistical inference using extreme value order statistics, Annals of Statististics, 3, pp.119-131.
Weisberg, S., (2005). Applied Linear Regression, WILEY, 3rd Ed. |
Description: | 碩士 國立政治大學 統計研究所 99354004 100 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0099354004 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
400401.pdf | 2384Kb | Adobe PDF2 | 1343 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|