Reference: | 1. Alt, F. B. (1985), “Multivariate quality control,” In: Kotz, S. and Johnson, N., eds. Encyclopedia of Statistics. 6, John Wiley & Sons, New York, NY, 110-122. 2. Alt, F. B. and Bedewi, G. E. (1986), “SPC for dispersion for multivariate data,” ASQC. Qual. Congress Trans, 248-254. 3. Aparisi F. and Haro, C. L. (2001), “Hotelling T2 control chart with variable sampling intervals,” Int. J. Prod. Res, 39(14), 3127-3140. 4. Chan, L. K. and Zhang, J. (2001), “Cumulative sum control chart for the covariance matrix,” Statist. Sinica, 11, 767-790. 5. Chen Y. K. and Hsieh K. L. (2007), “Hotelling T2 control chart with variable sample size and control limit,” European Journal of Operational Research, 182, 1251 – 1262. 6. Cheng, G. Z. (1995), “A Study of an Application on the Multi-Characteristic Quality Loss Function,” Master’s Thesis, Providence University, Shalu, Taiwan. 7. Cheng, S. W. and Thaga, K. (2005), ”Multivariate Max-CUSUM chart,” Quality Technology & Quantitative Management, 2(2), 221-235. 8. Chou, C. Y., Liu, H. R., Chen, C. H. and Huang, X. R. (2002), “Economic-statistical design of multivariate control charts using quality loss function,” Int J Adv Manuf Technol, 20, 916-924. 9. Costa, A. F. B. and Machado, M. A. G. (2009), “A new chart based on sample variances for monitoring the covariance matrix of multivariate processes,” Int J Adv Manuf Technol, 41, 770-779. 10. Crosier, R. B. (1988), “Multivariate generalizations of cumolative sum quality control schemes,” Technometrics, 30, 291-303. 11. Farebrother, R. W. (1984), “Algorithm AS 204: The distribution of a positive linear combination of random variables,” Journal of the Royal Statistical Society, Series C (Applied Statistics), 33, 332-339. 12. Hawkins, D. M. (1991), “Multivariate quality control based on regression – adjusted variables,” Technometrics, 33, 61-75. 13. Hawkins, D. M. and Maboudou-Tchao, E. M. (2008), “Multivariate exponentially weighted moving covariance matrix,” Technometrics, 50, 155-166. 14. Hawkins, D. M., Qiu, P. and Kang, C. W. (2003), “The changepoint model for statistical process control,” Journal of Quality Technology, 35 (4), 355-366. 15. Hawkins, D. M. and Zamba K. D. (2005), “Statistical process control for shifts in mean or variance using a changepoint formulation,” Technometrics, 47 (2), 164-173. 16. Healy, J. D. (1987), “A note on multivariate quality CUSUM procedures,” Technometrics, 29, 409-412. 17. Imhof, J. P. (1961), “Computing the distribution of quadratic forms in normal variables,” Biometrika, 48(3 and 4), 419-426. 18. Jackson, J. E. (1959), “Quality control methods for several related variables,” Technometrics, 1, 359-377. 19. James, W. and Stein, C. (1961), “Estimation with quadratic loss,” Fourth Berkeley Simpslum, 361-379. 20. Johnson, R. A. and Wichern D. W. (1992), “Applied multivariate statistical analysis,” Englewood Cliffs, N.J. : Prentice Hall 21. Khoo, B. C. (2005), “A new bivariate control chart to monitor the multivariate process mean and variance simultaneously,” Quality Engineering, 17, 109-118. 22. Liu, H., Tang, Y., and Zhang, H. H. (2009), “Computational statistics and data analysis,” Computational Statistics and Data Analysis, 53, 853-856. 23. Liu, R. Y. (1995), “Control charts for multivariate process,” J. Amer. Statist. Assoc, 90, 1380-1387. 24. Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992), “A multivariate exponentially weighted moving average control chart,” Technometrics, 34, 46-53. 25. Mahmoud, M. A. and Zahran, A. R. (2011), “ A multivariate adaptive exponentially weighted moving average control chart,” Communications in Statistics – Theory and Methods, 39 (4), 606-625. 26. Mohebbi, C. and Hayre, L. (1989), “Multivariate control charts: a loss function approach,” Sequential Analysis, 8, 253-268. 27. Moschopoulous, P. G. and Canada, W. B. (1984), “The distribution function of a linear combination of chi-square,” Comp. & Maths, with Appls., 10, 383-386. 28. Montgomery, D. C. (2001), Introduction to statistical quality control, 4th Ed, John Wiley & Sons, New York, NY. 29. Patnaik, P. B. (1949), “The non-central - and F-distribution and their applications,” Biometrika, 36, 202-232. 30. Pearson, E. S. (1959), “Note on an approximation to the distribution of non-central ,” Biometrika, 46, 364-365. 31. Pignatiello, J. J. and Runger, G. C. (1990), “Comparisons of multivariate CUSUM charts,” J. Qual. Technol, 22, 173-186. 32. Qiu, P. and Hawkins, D. M. (2001), “A rank-based multivariate CUSUM procedure,” Technometrics, 43, 120-132. 33. Reynolds, M. R. and Cho, G. Y. (2006), “Multivariate control charts for monitoring the mean vector and covariance matrix,” J. Qual. Technol, 38(3), 230-253. 34. Spiring, F. A. and Cheng, S. W. (1998), “An alternate variables control chart: the univariate and multivariate case,” Statistica Sinica, 8, 273-287. 35. Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P. and Woodall, W. H. (2000). “The state of statistical process control as we proceed into the 21st century,” J. Amer. Statist. Assoc, 95, 992-998. 36. Tang, P. F. and Barnett, N. S. (1996a), “Dispersion control for multivariate processes,” Aust. N. J. Stat, 38, 235-251. 37. Tang, P. F. and Barnett, N. S. (1996b), “Dispersion control for multivariate processes-some comparisons,” Aust. N. J. Stat, 31, 376-386. 38. Tsui, K. and Woodall, W. H. (1993), “Multivariate control charts based on loss functions,” Sequential Analysis, 12(1), 79-92. 39. Woodall, W. H. and Montgomery D. C. (1999), “Research issues and ideas in statistical process control,” J. Qual. Technol, 31, 376-386. 40. Woodall, W. H. and Nucube, M. M. (1985), “Multivariate CUSUM quality control procedures,” Technometrics, 27, 285-292. 41. Xie, H. (1999). “Contribution to qualimetry,” Ph.D. thesis, University of Manitoba, Winnipeg, Canada. 42. Yang, S. F., Lin, K. J. and Hung, T.C. (2009), “ Improvement in consistency of the metallic film thickness of computer connectors,” Journal of Process Control, 19, 498-505. 43. Yeh, A. B., Huwang, L. and Wu, Y. F. (2004), “A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes,” IIE Trans, 36, 865-879. 44. Yeh, A. B., Huwang, L. and Wu, C. W. (2005), “A multivariate EWMA control chart for monitoring process variability with individual observations,” IIE Trans, 37, 1023-1035. 45. Yeh, A. B. and Lin, D. K. (2002), “A new variables control chart for simultaneously monitoring multivariate process mean and variability,” Int. J. Reliab. Qual. Saf. Eng, 9 (1). 41-59. 46. Yeh, A. B., Lin, K. J., Zhou, H. H. and Venkataramani, C. (2003), “ A multivariate exponentially weighted moving average control chart for monitoring process variability,” Journal of Applied Statistics, 30(5), 507-536. 47. Zamba, K. D. and Hawkinsm D. M. (2006), “A multivariate change-point model for statistical process control,” Technometrics, 48 (4), 539-548. 48. Zhang, J., Li, Z. and Wang, Z. (2010), “A multivariate control chart for simultaneously monitoring process mean and variability,” Computational Statisitcs and Data Analysis, 54, 2244-2252. |