Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/36394
|
Title: | 有向圖的視線數 Bar visibility number of oriented graph |
Authors: | 曾煥絢 Tseng, Huan-Hsuan |
Contributors: | 張宜武 Chang, Yi-Wu 曾煥絢 Tseng, Huan-Hsuan |
Keywords: | 有向圖 oriented graph planar |
Date: | 1997 |
Issue Date: | 2009-09-18 18:28:17 (UTC+8) |
Abstract: | 在張宜武教授的博士論文中研究到視線表示法和視線數。我們以類似的方法定義有向圖的表示法和有向圖的視線數。
首先,我們定義有向圖的視線數為b(D) ,D為有方向性的圖,在論文中可得b(D)≦┌1/2max{△﹢(D),△﹣(D)}┐。另一個重要的結論為考慮一個平面有向圖D,對圖形D上所有的點v,離開點v的邊(進入的邊)是緊鄰在一起時,則可得有向圖的視線數在這圖形上是1(即 b(D)=1)。
另外對特殊的圖形也有其不同的視線數,即對有向完全偶圖Dm,n ,b(Dm,n)≦┌1/2min{m,n}┐ ,而對競賽圖Dn ,可得b(Dn)≦┌n/3┐+1。 In [2], Chang stuidied the bar visibility representations and defined bar visibility number.We defined analogously the bar visibility representation and the bar visibility number of a directed graph D.
First we show that the bar visibility number, denoted by b(D),is at most ┌1/2max{△﹢(D),△﹣(D)}┐ if D is an oriented graph.And we show that b(D)=1 for the oriented planar graphs in which all outgoing (incoming) edges of any vertex v of D appear consecutively around v.For any complete bipartite digraph Dm,n ,b(Dm,n)≦┌1/2min{m,n}┐.For any tournament Dn,b(Dn)≦┌n/3┐+1. |
Reference: | REFERENCES [1] J. A. Boundy and U. S. R. Murty, Graph theory with applications (1976). [2] Yi-Wu Chang, Bar visibility number, Ph.D. thesis, University of Illinois, 92-102, (1994). [3] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, (1979). [4] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, in Theory of Graphs (Proceedings of an International Symposium, Rome, July 1966), (P. Rosenstiehl, ed.), 215-232, Gordon and Breach, New York, (1967). [5] Y.-L. Lin and S.S. Skiena, Complexity aspects of visibility graphs, International journal of Computational Geometry & Applications. <br>[6] L. A. Melnikov, Problem at the Sixth Hungarian Colloquium on Combinatorics, Eger, (1981). [7] M. Schlag, F. Luccio, P. Maestrini, D. T. Lee, and C. K. Wong, A visibility problem in VLSI layout compaction, in Advances in Compution Research, Vol. 2 (F. P. Preparata, ed.), 259-282, JAI Press Inc.,Greenwich, CT, (1985). [8] M. Sen, S. Das, A.B. Roy, and D.B. West, Interval digraphs: An analogue of interval graphs, J. Graph Theory, Vol. 13, 189-202 (1989). [9] R. Tamassia and I. G. Tollis, A unified approach to visibility representations of planar graphs, Discrete and Computational Geometry, Vol. 1, 321-341 (1986). [10] D. B. West, Degrees and digraphs, Introduction to Graph Theory, 46-49, (1996). |
Description: | 碩士 國立政治大學 應用數學研究所 85751006 86 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#B2002001695 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 478 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|