政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36394
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51041099      Online Users : 965
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36394


    Title: 有向圖的視線數
    Bar visibility number of oriented graph
    Authors: 曾煥絢
    Tseng, Huan-Hsuan
    Contributors: 張宜武
    Chang, Yi-Wu
    曾煥絢
    Tseng, Huan-Hsuan
    Keywords: 有向圖
    oriented graph
    planar
    Date: 1997
    Issue Date: 2009-09-18 18:28:17 (UTC+8)
    Abstract: 在張宜武教授的博士論文中研究到視線表示法和視線數。我們以類似的方法定義有向圖的表示法和有向圖的視線數。
    首先,我們定義有向圖的視線數為b(D) ,D為有方向性的圖,在論文中可得b(D)≦┌1/2max{△﹢(D),△﹣(D)}┐。另一個重要的結論為考慮一個平面有向圖D,對圖形D上所有的點v,離開點v的邊(進入的邊)是緊鄰在一起時,則可得有向圖的視線數在這圖形上是1(即 b(D)=1)。
    另外對特殊的圖形也有其不同的視線數,即對有向完全偶圖Dm,n ,b(Dm,n)≦┌1/2min{m,n}┐ ,而對競賽圖Dn ,可得b(Dn)≦┌n/3┐+1。
    In [2], Chang stuidied the bar visibility representations and defined bar visibility number.We defined analogously the bar visibility representation and the bar visibility number of a directed graph D.
    First we show that the bar visibility number, denoted by b(D),is at most ┌1/2max{△﹢(D),△﹣(D)}┐ if D is an oriented graph.And we show that b(D)=1 for the oriented planar graphs in which all outgoing (incoming) edges of any vertex v of D appear consecutively around v.For any complete bipartite digraph Dm,n ,b(Dm,n)≦┌1/2min{m,n}┐.For any tournament Dn,b(Dn)≦┌n/3┐+1.
    Reference: REFERENCES
    [1] J. A. Boundy and U. S. R. Murty, Graph theory with applications (1976).
    [2] Yi-Wu Chang, Bar visibility number, Ph.D. thesis, University of Illinois, 92-102, (1994).
    [3] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, (1979).
    [4] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, in Theory of Graphs (Proceedings of an International Symposium, Rome, July 1966), (P. Rosenstiehl, ed.), 215-232, Gordon and Breach, New York, (1967).
    [5] Y.-L. Lin and S.S. Skiena, Complexity aspects of visibility graphs, International journal of Computational Geometry & Applications.
    <br>[6] L. A. Melnikov, Problem at the Sixth Hungarian Colloquium on Combinatorics, Eger, (1981).
    [7] M. Schlag, F. Luccio, P. Maestrini, D. T. Lee, and C. K. Wong, A visibility problem in VLSI layout compaction, in Advances in Compution Research, Vol. 2 (F. P. Preparata, ed.), 259-282, JAI Press Inc.,Greenwich, CT, (1985).
    [8] M. Sen, S. Das, A.B. Roy, and D.B. West, Interval digraphs: An analogue of interval graphs, J. Graph Theory, Vol. 13, 189-202 (1989).
    [9] R. Tamassia and I. G. Tollis, A unified approach to visibility representations of planar graphs, Discrete and Computational Geometry, Vol. 1, 321-341 (1986).
    [10] D. B. West, Degrees and digraphs, Introduction to Graph Theory, 46-49, (1996).
    Description: 碩士
    國立政治大學
    應用數學研究所
    85751006
    86
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001695
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2478View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback