Reference: | [1]Draper, N. R. and Smith, H., (1980). Applied Regression Analysis,Wiley, New York. [2]D`Urso, P. and Gastaldi, T., (2000). A least-squares approach to fuzzy linear regression analysis. 34, 427-440. [3]D`Urso, P., (2003). Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. 42,47-72. [4]Tanaka, H., (1987). Fuzzy data analysis by possibilistic linear models. [5]Tanaka, H., Uejima, S., Asai, K., (1982). Fuzzy limear regression model.903-907. [6]Xu, R. and Li, C., (2001). Multidimensional least-squares fitting with a fuzzy model.215-223. [7]Yang, M. S. and Ko, C. H., (1996). On a class of $c$-numberrs clustering procedures for fuzzy data.84,49-60. [8]Yang, M. S. and Liu, H. H., (2003). Fuzzy least-squares algorithms for interactive fuzzy linear regression modles.135, 305-316. [9]Yang, M. S. and Liu, H. H., (2005). A new statistic for influence in linear regression.47, 305-316 [10]Zimmermann, H. J., (1991). Fuzzy Set Theory and its Applications,Kluwer,Dordrecht. [11]吳柏林(2005):模糊統計導論方法與應用。台北,五南圖書出版社。 |