English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51085319      Online Users : 929
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32575
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32575


    Title: 模糊線性迴歸之研究
    Authors: 趙家慶
    Contributors: 宋傳欽
    趙家慶
    Keywords: 模糊線性迴歸
    具影響力觀察值
    離群值
    雙重模糊線性迴歸模型
    隸屬度函數
    fuzzy linear regression
    influence observation
    outlier
    doubly fuzzy linear regression
    membership function
    Date: 2005
    Issue Date: 2009-09-17 13:46:45 (UTC+8)
    Abstract: 使用傳統迴歸的方式對未知事物做預測,往往不能夠精準的做出結論,縱使在相同的條件下實際去操作,也很難得到相同的結果,因此模糊數概念的建立,並運用在迴歸分析上更能有效描述預測結果的不確定性。然而模糊線性迴歸(Fuzzy Linear Regression)在利用最小平方法處理問題時,往往過於著重在模糊區間的中心與分展度上,而忽略了描述資料的模糊性,使得隸屬度函數(membership function)的功能受到相當大的限制。本文在D`Urso和Gastaldi(2000)所提出的雙重模糊線性迴歸(doubly fuzzy linear regression)模型架構下,利用Yang和Ko(1996)在LR空間下所定義模糊數間的距離公式,導出能反映隸屬度函數的最小平方估計,並引進一些傳統迴歸中常用來偵測離群值(outlier)與具影響力觀察值(influence observation)的概念與技巧,應用在模糊線性迴歸資料的偵測上。
    Reference: [1]Draper, N. R. and Smith, H., (1980). Applied Regression Analysis,Wiley, New York.
    [2]D`Urso, P. and Gastaldi, T., (2000). A least-squares approach to fuzzy linear regression analysis. 34, 427-440.
    [3]D`Urso, P., (2003). Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. 42,47-72.
    [4]Tanaka, H., (1987). Fuzzy data analysis by possibilistic linear models.
    [5]Tanaka, H., Uejima, S., Asai, K., (1982). Fuzzy limear regression model.903-907.
    [6]Xu, R. and Li, C., (2001). Multidimensional least-squares fitting with a fuzzy model.215-223.
    [7]Yang, M. S. and Ko, C. H., (1996). On a class of $c$-numberrs clustering procedures for fuzzy data.84,49-60.
    [8]Yang, M. S. and Liu, H. H., (2003). Fuzzy least-squares algorithms for interactive fuzzy linear regression modles.135, 305-316.
    [9]Yang, M. S. and Liu, H. H., (2005). A new statistic for influence in linear regression.47, 305-316
    [10]Zimmermann, H. J., (1991). Fuzzy Set Theory and its Applications,Kluwer,Dordrecht.
    [11]吳柏林(2005):模糊統計導論方法與應用。台北,五南圖書出版社。
    Description: 碩士
    國立政治大學
    應用數學研究所
    93751003
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093751003
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75100301.pdf69KbAdobe PDF2681View/Open
    75100302.pdf306KbAdobe PDF2664View/Open
    75100303.pdf469KbAdobe PDF2709View/Open
    75100304.pdf609KbAdobe PDF2803View/Open
    75100305.pdf645KbAdobe PDF2780View/Open
    75100306.pdf602KbAdobe PDF2728View/Open
    75100307.pdf497KbAdobe PDF21154View/Open
    75100308.pdf552KbAdobe PDF2863View/Open
    75100309.pdf447KbAdobe PDF21265View/Open
    75100310.pdf829KbAdobe PDF2784View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback