Reference: | 1. Alexandrescu, A., 2003, Modern C++ design : generic programming and design patterns applied, 1th edition, Addison Wesley. 2. Babbs. S. , 2000, “Binomial Valuation of Lookback option,” Journal of Economic Dynamics & Control, 24, 1499-1525. 3. Bjarne Stroustrup, The C++ Programming Language, Special edition, Addison Wesley. 4. Black, F., and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81, 637-659. 5. Boyle, P. P., 1988, “A Lattice Framework for option Pricing with Two State Variable,” Journal of Financial and Quantitative Analysis, 23, 1-12. 6. Boyle, P. P., and S.H. Lau, 1994, “Bumping Up Against The Barrier With the Binomial Method,” Journal of Derivative, 1, 6-14. 7. Broadie, M. and P. Glasserman, 1997, “A Continuity Correction for Discrete Barrier Options,” Mathematical Finance, 7, 4, 325- 349. 8. Broadie, M., P. Glasserman, and S. Kou, 1999, “Connecting Discrete Continuous Path-Dependent Options,” Finance and Stochastics, 3, 55-82. 9. Cheuk, T., and T. Vorst, 1996, “Complex barrier options,” Journal of derivative, 8-22. 10. Cox, J. C., Ross, S. A., and M. Rubinstein, 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics 7, 229-263. 11. Dai, T. S., and Y. D. Lyuu, 2002, “Efficient, Exact Algorithms for Asian Options Algorithms with Multiresolution Lattices,” Review of Derivatives Researches, 5, 2, 181–203. 12. Figlewski, S. and B. Gao, 1999 “The Adaptive Mesh Model : A New Approach to Efficient Option Pricing,” Journal of Financial Economic, 53, 313-51. 13. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, 1995, Design Pattern : Elements of Reusable Object-Oriented Software, 1th edition, Addison Wesley. 14. Goldman, B., H. Sosin, and M. A. Gatto, 1979, “Path-Dependent Options : Buy at the Low, Sell at the High,” Journal of Finance, 34, 1111-1127. 15. Hsia, C. C., 1983, “On Binomial Option Pricing,” Journal of Financial Research, 6, 1, 41-46. 16. Hull, J. C., 2003, Options, Futures, and Other Derivative Securities, 4th edition, Prentice Hall. 17. Hull, J., and A. White, 1993, “Efficient Procedures for Valuing European and American Path-Dependent Options,” Journal of Derivatives, 21-31. 18. Hull., J. and A. White, 1990, “Valuing Derivative Securities Using the Explicit Finite Difference Method,” Journal of Financial and Quantitative Analysis, 25, 1, 87-100. 19. Kamrad, B. and P. Ritchken, 1991, “Multinomial Approximating Models for Options with k State Variable,” Management Science, 37, 12, 1640-1652. 20. Kemna, A. and A. Vorst, 1990, “A Pricing Method for Options Based on Average Asset Values,” Journal of Banking and Finance, 14, 113-129. 21. Kemna, A. G. Z., and A. C. F. Vorst, 1990, “A Pricing Method for Options based on Average Asset Values,” Journal of Banking and Finance, 14, 113-129. 22. Klassen, T. R., 2001, “Simple, Fast and Flexible Pricing of Asian Options,” Journal of Computational Finance, 4, 89-124. 23. Rendelman, R. J. J., and B. J. Bartter, 1979, “Two-state option pricing,” Journal of Finance, 34, 5, 1093-1110. 24. Ritchken, P., 1995, “On Pricing Barrier Options,” The Journal of Derivatives, 2, 19. 25. TurnBull, S. M. and L. M. Wakeman, 1991, “A Quick Algorithm for Pricing European Average Options,” Journal of Financial Quantitative Analysis, 26, 337-389. 26. 謝明華,2002,動態二元樹模型:路徑相依選擇權評價之數值計算新架構,國立中央大學財務管理系研討會 27. 陳威光,2001,選擇權理論、實務與應用,智勝文化公司 28. 林明瑩,2000,路徑相依型選擇權定價與其數值評價方法之探討,國立中山大學財務管理研究所碩士論文 29. 王志原,1999,增進樹狀模型評價重設型選擇權效率之方法,國立政治大學金融學系碩士論文 30. 李鑑洲,2000, 評價亞式重設選擇權之數值方法,國立臺灣大學財務金融學研究所碩士論文 |