政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/31116
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753703      Online Users : 773
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/31116
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/31116


    Title: 動態樹狀法-路徑相依選擇權的新評價方法
    Authors: 林立人
    Lin, Li-Ren
    Contributors: 謝明華
    Hsieh, Ming-hua
    林立人
    Lin, Li-Ren
    Keywords: 財務工程
    障礙選擇權
    回顧選擇權
    亞式選擇權
    間斷時間模型
    樹狀模型
    路徑相依選擇權
    Financial engineering
    Barrier option
    Lookback option
    Asian option
    Discrete time model
    Tree model
    Path-dependent option
    Date: 2005
    Issue Date: 2009-09-14 09:17:02 (UTC+8)
    Abstract: 本文針對路徑相依選擇權(path dependent option)商品,提供一個一般化且有效率評價方法。由於路徑相依選擇權的種類很多,而大部分的美式路徑相依選擇權都沒有封閉解(closed-form),或是封閉解的數學計算過於複雜,而造成評價的困難。此時,透過數值方法可以對路徑相依選擇權定出理論價值。但是選定一個有效率的數值方法是主要的困難,理論上,樹狀模型及蒙地卡羅的數值方法都可以評價路徑相依選擇權,而蒙地卡羅法在評價美式選擇權時較困難,相對而言,使用樹狀模型可以評價美式的選擇權的一個不錯的方法。
    自從CRR(Cox, Ross and Rubinstein, 1979)發展二項樹模型(Binomial Tree model)來評價選擇權後,二項樹模型一直被廣泛的應用,此方法基本的概念假設股價的變動為間斷(Discrete)的,且股價呈現上漲或下跌兩種情形,這樣可以容易地來評價歐式及美式的選擇權。之後Boyle(1988)更發展三元樹模型(Trinomial Tree),股價比CRR更多了持平的情形,這樣比CRR多考慮了一種股價行為的模式,實證得知三元樹在穩定性及收斂度上比二項樹表現較佳。
    上述二項樹模型及三元樹模型受到節點重合(recombined)的特性,而路徑相依選擇權同一個節點若由不同歷史路徑所產生時,其報酬(payoff)是不同的,報酬可能因為歷史路徑的不同產生很多的情形,所以當路徑相依選擇權的條件越複雜時,要評價一個路徑相依選擇權有其困難性。
    本文分別以二項樹模型及三元樹模型來評價路徑相依的選擇權,而為了解決節點可能存在之前的路徑問題,放鬆條件使得節點不再結合一起(non-recombined),如此所有的節點將可以被紀錄,不會有不能評價路徑相依選擇權的問題,但在此情況下會產生另一個問題,節點數隨著切割期數的上昇呈指數成長,使得電腦計算較無效率。
    針對路徑選擇權本文提出一個有效率的路徑相依選擇權方法,稱為動態樹狀法(Dynamic Tree Model, DTM),此評價方法建構在風險中立定價(risk-neutral)的理論基礎上。在每一期時間點檢查是否有相同的路徑資訊和標的物現價,若發生路徑資訊和標的物的現價相同且有重複的節點時,可以預期的,這些節點未來長出的子股價樹也會相同,因此不必重複節點,浪費電腦記憶體空間及運算時間,而將此節點予以合併,以達到減少節點個數目的。若遇到不同的路徑資訊或不同標的物現價的節點時,則予以產生。
    動態樹狀法將真正需要的節點加以產生,其目的能降低節點數目,改善計算效率,而將此方法廣泛地應用在其他不同的路徑相依選擇權上。而根據不同路徑相依選擇權,我們必須將有用的路徑資訊存在節點上。本文將提出一般化的模型,使用policy設計樣式,以二項樹及三元樹為例,並選擇不同的路徑相依選擇權產品-障礙選擇權、回顧選擇權、亞式選擇權為例,求其理論價值,而實務上通常是間斷(discrete)觀察,我們將討論間斷觀測的情形,比較其觀察點、效率、精確度、節點數目、允許誤差之探討,並提出建議,也能夠廣泛應用在其它路徑相依選擇權上。
    Reference: 1. Alexandrescu, A., 2003, Modern C++ design : generic programming and design patterns applied, 1th edition, Addison Wesley.
    2. Babbs. S. , 2000, “Binomial Valuation of Lookback option,” Journal of Economic Dynamics & Control, 24, 1499-1525.
    3. Bjarne Stroustrup, The C++ Programming Language, Special edition, Addison Wesley.
    4. Black, F., and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81, 637-659.
    5. Boyle, P. P., 1988, “A Lattice Framework for option Pricing with Two State Variable,” Journal of Financial and Quantitative Analysis, 23, 1-12.
    6. Boyle, P. P., and S.H. Lau, 1994, “Bumping Up Against The Barrier With the Binomial Method,” Journal of Derivative, 1, 6-14.
    7. Broadie, M. and P. Glasserman, 1997, “A Continuity Correction for Discrete Barrier Options,” Mathematical Finance, 7, 4, 325- 349.
    8. Broadie, M., P. Glasserman, and S. Kou, 1999, “Connecting Discrete Continuous Path-Dependent Options,” Finance and Stochastics, 3, 55-82.
    9. Cheuk, T., and T. Vorst, 1996, “Complex barrier options,” Journal of derivative, 8-22.
    10. Cox, J. C., Ross, S. A., and M. Rubinstein, 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics 7, 229-263.
    11. Dai, T. S., and Y. D. Lyuu, 2002, “Efficient, Exact Algorithms for Asian Options Algorithms with Multiresolution Lattices,” Review of Derivatives Researches, 5, 2, 181–203.
    12. Figlewski, S. and B. Gao, 1999 “The Adaptive Mesh Model : A New Approach to Efficient Option Pricing,” Journal of Financial Economic, 53, 313-51.
    13. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, 1995, Design Pattern : Elements of Reusable Object-Oriented Software, 1th edition, Addison Wesley.
    14. Goldman, B., H. Sosin, and M. A. Gatto, 1979, “Path-Dependent Options : Buy at the Low, Sell at the High,” Journal of Finance, 34, 1111-1127.
    15. Hsia, C. C., 1983, “On Binomial Option Pricing,” Journal of Financial Research, 6, 1, 41-46.
    16. Hull, J. C., 2003, Options, Futures, and Other Derivative Securities, 4th edition, Prentice Hall.
    17. Hull, J., and A. White, 1993, “Efficient Procedures for Valuing European and American Path-Dependent Options,” Journal of Derivatives, 21-31.
    18. Hull., J. and A. White, 1990, “Valuing Derivative Securities Using the Explicit Finite Difference Method,” Journal of Financial and Quantitative Analysis, 25, 1, 87-100.
    19. Kamrad, B. and P. Ritchken, 1991, “Multinomial Approximating Models for Options with k State Variable,” Management Science, 37, 12, 1640-1652.
    20. Kemna, A. and A. Vorst, 1990, “A Pricing Method for Options Based on Average Asset Values,” Journal of Banking and Finance, 14, 113-129.
    21. Kemna, A. G. Z., and A. C. F. Vorst, 1990, “A Pricing Method for Options based on Average Asset Values,” Journal of Banking and Finance, 14, 113-129.
    22. Klassen, T. R., 2001, “Simple, Fast and Flexible Pricing of Asian Options,” Journal of Computational Finance, 4, 89-124.
    23. Rendelman, R. J. J., and B. J. Bartter, 1979, “Two-state option pricing,” Journal of Finance, 34, 5, 1093-1110.
    24. Ritchken, P., 1995, “On Pricing Barrier Options,” The Journal of Derivatives, 2, 19.
    25. TurnBull, S. M. and L. M. Wakeman, 1991, “A Quick Algorithm for Pricing European Average Options,” Journal of Financial Quantitative Analysis, 26, 337-389.
    26. 謝明華,2002,動態二元樹模型:路徑相依選擇權評價之數值計算新架構,國立中央大學財務管理系研討會
    27. 陳威光,2001,選擇權理論、實務與應用,智勝文化公司
    28. 林明瑩,2000,路徑相依型選擇權定價與其數值評價方法之探討,國立中山大學財務管理研究所碩士論文
    29. 王志原,1999,增進樹狀模型評價重設型選擇權效率之方法,國立政治大學金融學系碩士論文
    30. 李鑑洲,2000, 評價亞式重設選擇權之數值方法,國立臺灣大學財務金融學研究所碩士論文
    Description: 碩士
    國立政治大學
    資訊管理研究所
    91356039
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0913560393
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2323View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback