Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/155530
|
Title: | 臺灣閩南語健康照護文本的身體部位名稱:實體提取與語意探索 Entity Extraction and Semantics exploration of body part names In Taiwan Southern Min healthcare texts |
Authors: | 蔡長祐 Tsai, Chang-Yu |
Contributors: | 張瑜芸 Chang, Yu-Yun 蔡長祐 Tsai, Chang-Yu |
Keywords: | 臺灣閩南語 身體部位名稱 實體提取 物性結構 Taiwan Southern Min body part name entity extraction qualia structure |
Date: | 2025 |
Issue Date: | 2025-02-04 16:21:23 (UTC+8) |
Abstract: | 台灣即將步入超高齡社會,臺灣閩南語在健康照護服務中的角色日益重要。本研究旨在分析臺灣閩南語健康照護文本中的身體部位,並探討其語意,將這些分析應用於相關的自然語言處理任務中。本研究設計了序列標記任務,任務目標在於抓取台灣閩南語健康照護文本中的身體部位,由於臺灣閩南語資料相對稀缺,本研究使用 mBERT 獲取嵌入,作為基準模型。此外,研究還加入部首和詞性標記作為額外特徵,期望能提升模型表現。實驗結果顯示,加入新特徵後的模型(F1=89.88%)相較於基準模型(F1=87.46%)有所提升。本研究進一步分析了身體部位的語意內涵,發現身體部位的形式角色、構成角色及功能角色能夠在語言結構中呈現。其中,構成角色與部首有關,功能角色則可以從身體部位在句法中的地位中推斷。本研究對臺灣閩南語健康照護文本中的身體部位進行了系統性探討,並提供了分析身體部位名稱的多種視角。未來,這些成果可應用於自然語言處理技術中,協助提升健康照護服務的效率,並期望未來能持續開展相關研究。 Taiwan is approaching a super-aged society, and Taiwan Southern Min is becoming increasingly important in healthcare services. This study aims to analyse body part terms in Taiwan Southern Min healthcare texts and explore their semantic structure, applying these analyses to Natural Language Processing tasks. This study conducted the sequence labelling task and the task aims to extract body part names in Taiwan Southern Min healthcare texts. Due to the relative scarcity of Taiwan Southern Min data, this study utilises mBERT for embeddings as the baseline model. Additionally, radical and part-of-speech tags are incorporated as features, with the expectation of improving model performance. Experimental results show that the model with the added features (F1 = 89.88%) outperforms the baseline model (F1 = 87.46%). This study further analyses the semantic content of body parts, revealing that the formal, constitutive, and telic roles of body parts are reflected in their linguistic forms. The constitutive role is related to radicals, while the telic role can be inferred from the syntactic position of the body part. This research provides a systematic exploration of body parts in Taiwan Southern Min healthcare texts, offering multiple perspectives for analysing body part terms. In the future, these findings can be applied to natural language processing technologies to improve the efficiency of healthcare services and lay the foundation for ongoing research in this area. |
Reference: | Abate, S. T., Melese, M., Tachbelie, M. Y., Meshesha, M., Atinafu, S., Mulugeta, W., Assabie, Y., Abera, H., Ephrem, B., Abebe, T., Tsegaye, W., Lemma, A., Andargie, T., & Shifaw, S. (2018). Parallel corpora for bi-directional statistical machine translation for seven Ethiopian language pairs. In P. Machonis, A. Barreiro, K. Kocijan, & M. linguistic resources for natural language processing. Association for Computational Linguistics. https://aclanthology.org/W18-3812 Abbott, J. Z., & Martinus, L. (2018). Towards neural machine translation for African languages. Adelani, D. I., Abbott, J., Neubig, G., D’souza, D., Kreutzer, J., Lignos, C., Palen-Michel, C., Buzaaba, H., Rijhwani, S., Ruder, S., Mayhew, S., Azime, I. A., Muhammad, S., Emezue, C. C., Nakatumba-Nabende, J., Ogayo, P., Aremu, A., Gitau, C., Mbaye, D., … Osei, S. (2021). MasakhaNER: Named entity recognition for African languages. https://arxiv.org/abs/2103.11811 Ang, U. (2019a). Studies on social language geography of taiwan, volume i. Avanguard Publishing House. Ang, U. (2019b). Studies on social language geography of taiwan, volume ii. Avanguard Publishing House. Cai, X., Dong, S., & Hu, J. (2019). A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records. BMC medical informatics and decision making., 19(2). Chao, S.-Y., & Roth, P. (2005). Dimensions of quality in long-term care facilities in Taiwan. Journal of Advanced Nursing, 52(6). https://doi.org/10.1111/j.1365-2648.2005.03632.x Chappell, H. (2019). Southern Min. In A. Vittrant & J. Watkins (Eds.), The mainland southeast Asia linguistic area. De Gruyter Mouton. https://doi.org/10.1515/ 9783110401981-005 Chen, W., Zhang, Y., & Isahara, H. (2006). Chinese named entity recognition with conditional random fields. In H. T. Ng & O. O. Kwong (Eds.), Proceedings of the fifth SIGHAN workshop on Chinese language processing. Association for Computational Linguistics. https://aclanthology.org/W06-0116 Cheng, S.-T., Tiunn, H.-C., & HUANG, C.-Y. (2014). Medical Taiwanese. Kaohsiung Medical University, Liwen Culture Group. https://books.google.com.tw/books?id=TwPyoAEACAAJ Cheng, Y.-F., Lee, H.-S., & Wang, H.-M. (2021). Allost: Low-resource speech translation without source transcription. Chou, Y.-H., Chang, K., Wu, M.-J., Ou, W., Bi, A. W.-H., Yang, C., Chen, B. Y., Pai, R.-W., Yeh, P.-Y., Chiang, J.-P., Phoann, I.-T., Chang, W., Cui, C., Chen, N., & Shi, J. (2023). Evaluating self-supervised speech models on a Taiwanese Hokkien corpus. 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). https://doi.org/10.1109/ASRU57964.2023.10389734 Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. Dancet, E., D’Hooghe, T., Sermeus, W., van Empel, I., Strohmer, H., Wyns, C., Santa-Cruz, D., Nardo, L., Kovatchki, D., Vanlangenakker, L., Garcia-Velasco, J., Mulugeta, B., Nelen, W., & Kremer, J. (2012). Patients from across Europe have similar views on patient-centred care: an international multilingual qualitative study in infertility care. Human Reproduction, 27(6). https://doi.org/10.1093/humrep/des061 Das, A., Ganguly, D., & Garain, U. (2017). Named entity recognition with word embeddings and Wikipedia categories for a low-resource language. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 16(3). https://doi.org/10.1145/3015467 Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805. http://arxiv.org/abs/1810.04805 Directorate General of Budget, Accounting and Statistics. (2022). The 2020 population and housing census. Dong, C., Zhang, J., Zong, C., Hattori, M., & Di, H. (2016). Character-based LSTM-CRF with radical-level features for Chinese named entity recognition. In C.-Y. Lin, N. Xue, D. Zhao, X. Huang, & Y. Feng (Eds.), Natural language understanding and intelligent applications. Springer International Publishing. https://doi.org/10.1007/978-3-319-50496-4_20 Dowty, D. R. (1989). On the semantic content of the notion of ‘thematic role’. In Properties, types and meaning: Volume ii: Semantic issues. Springer. Dowty, D. R. (1991). Thematic proto-roles and argument selection. Language, 67(3). Retrieved June 17, 2024, from http://www.jstor.org/stable/415037 Ebrahimi, A., Mager, M., Oncevay, A., Chaudhary, V., Chiruzzo, L., Fan, A., Ortega, J., Ramos, R., Rios, A., Meza Ruiz, I. V., Giménez-Lugo, G., Mager, E., Neubig, G., Palmer, A., Coto-Solano, R., Vu, T., & Kann, K. (2022). AmericasNLI: Evaluating zero-shot natural language understanding of pretrained multilingual models in truly low-resource languages. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th annual meeting of the association for computational linguistics (volume 1: Long papers). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.435 Eltyeb, S., & Salim, N. (2014). Chemical named entities recognition: A review on approaches and applications. Journal of cheminformatics, 6. https://doi.org/10.1186/1758-2946-6-17 Farmakiotou, D., Karkaletsis, V., Koutsias, J., Sigletos, G., Spyropoulos, C. D., & Stamatopoulos, P. (2000). Rule-based named entity recognition for greek financial texts. Proceedings of the Workshop on Computational lexicography and Multimedia Dictionaries (COMLEX 2000). Gruber, J. S. (1965). Studies in lexical relations. (Doctoral dissertation). Massachusetts Institute of Technology. Han, A. L.-F., Wong, D. F., & Chao, L. S. (2013). Chinese named entity recognition with conditional random fields in the light of Chinese characteristics. In M. A. Kłopotek, J. Koronacki, M. Marciniak, A. Mykowiecka, & S. T. Wierzchoń (Eds.), Language processing and intelligent information systems. Springer Berlin Heidelberg. He, Z., Wang, Z., Wei, W., Feng, S., Mao, X., & Jiang, S. (2020). A survey on recent advances in sequence labeling from deep learning models. https://doi.org/10.48550/arXiv.2011.06727 Hedderich, M. A., Lange, L., Adel, H., Strötgen, J., & Klakow, D. (2021). A survey on recent approaches for natural language processing in low-resource scenarios. Hopper, P. J., & Thompson, S. A. (1984). The discourse basis for lexical categories in universal grammar. Language, 60(4). Retrieved December 28, 2024, from http://www.jstor.org/stable/413797 Hsieh, M.-L. (2014). Taiwanese Hokkien/Southern Min. In The handbook of Chinese linguistics. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118584552. ch24 Hsu, W.-H., Liao, Y.-F., Wang, W.-J., & Pan, C.-M. (2022). Taiwanese voice conversion based on cascade ASR and TTS framework. International Journal of Computational Linguistics & Chinese Language Processing, 27(2). Hsu, W.-H., Tseng, C.-J., Liao, Y.-F., Wang, W.-J., & Pan, C.-M. (2020). A preliminary study on deep learning-based Chinese text to Taiwanese speech synthesis system (L.-H. Lee & K.-Y. Chen, Eds.). International Journal of Computational Linguistics and Chinese Language Processing, 25(2). https://aclanthology.org/2020.ijclclp-2.5 Hsu, W.-H., & Liao, Y.-F. (n.d.). NTUT’s Chinese to Taiwanese machine translation demo system. Retrieved May 11, 2024, from http://tts001.iptcloud.net:8802/ Hu, G. (1991). An analysis of ‘zhuanzhu’ and ‘jiajie’. Journal of Handan University. Huang, C. (2015). Educational value of semantic radicals in Hanzi bushou. Han-Character and Classical written language Education., 1. https://doi.org/10.15670/HACE Huang, C.-R., & Hsieh, S.-K. (2015). Chinese lexical semantics. In The Oxford handbook of Chinese linguistics. Oxford Univ. Press. Huang, P.-R. (2012). The radicals of Chinese characters and their pedagogical issues. Chinese Culture University Journal of Chinese. https://doi.org/doi:10.29989/ZGWHDXZWXB.201204.0002 Huang, S.-L., Lin, S.-C., Ma, W.-Y., & Chen, K.-J. (2015). Semantic roles and semantic role labeling (tech. rep. No. 15-01). Chinese Knowledge and Information Processing, Academia Sinica. Jackendoff, R. (1985). Multiple subcategorization and the θ-criterion: The case of climb. Natural Language & Linguistic Theory, 3(3). Retrieved July 7, 2024, from http://www.jstor.org/stable/4047530 Jackendoff, R. (1987). The status of thematic relations in linguistic theory. Linguistic Inquiry, 18(3). Retrieved July 2, 2024, from http://www.jstor.org/stable/4178548 Jung, S. J., Kim, H., & Jang, K. S. (2024). LLM based biological named entity recognition from scientific literature. 2024 IEEE International Conference on Big Data and Smart Computing (BigComp). https://doi.org/10.1109/BigComp60711.2024.00095 Jurafsky, D., & Martin, J. (2024). Speech and language processing. Pearson Education. https://books.google.com.tw/books?id=Cq2gBwAAQBAJ Keung, P., Lu, Y., & Bhardwaj, V. (2019). Adversarial learning with contextual embeddings for zero-resource cross-lingual classification and NER. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1138 Ko, M.-T., Chiang, Y.-C., & Lyu, R.-y. (2011). Development of Taiwanese speech and text corpus and Tawanese-Chinese parallel corpus (tech. rep. NSC99-2221-E001-007-MY3). National Science and Technology Council. Kondratyuk, D., & Straka, M. (2019). 75 languages, 1 model: Parsing universal dependencies universally. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1279 Krishnan, V., & Manning, C. D. (2006). An effective two-stage model for exploiting non-local dependencies in named entity recognition. In N. Calzolari, C. Cardie, & P. Isabelle (Eds.), Proceedings of the 21st international conference on computational linguistics and 44th annual meeting of the association for computational linguistics. Association for Computational Linguistics. https://doi.org/10.3115/1220175.1220316 Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. International Conference on Machine Learning. https : / / api . semanticscholar . org / CorpusID :219683473 Lai, C.-W. (2006). Languages, hands, and medicine: The humanity care of medical practitioners [話語、雙手與藥:醫者的人性關懷]. LIVING PSYCHOLOGY PUBLISHERS CO. https://books.google.com.tw/books?id=63vHGAAACAAJ Lee, E. (1995). A new perspective of Liusui. Journal of Hubei University(Philosophy and Social Science), 22(4). Lee, L.-H., & Lu, Y. (2021). Multiple embeddings enhanced multi-graph neural networks for Chinese healthcare named entity recognition. IEEE Journal of Biomedical and Health Informatics, 25(7). https://doi.org/10.1109/JBHI.2020.3048700 Li, J., & Meng, K. (2021). MFE-NER: multi-feature fusion embedding for named entity recognition. CoRR, abs/2109.07877. https://arxiv.org/abs/2109.07877 Li, L., Zhao, J., Hou, L., Zhai, Y., Shi, J., & Cui, F. (2019). An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records. BMC Medical Informatics and Decision Making, 19. https://doi.org/10.1186/s12911-019-0933-6 Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2020). Why attention? analyze BiLSTM deficiency and its remedies in the case of NER. https://arxiv.org/abs/1908.11046 Li, W., Shi, S., Gao, Z., Wei, W., Zhu, Q., Lin, X., Jiang, D., & Gao, S. (2018). Improved deep belief network model and its application in named entity recognition of Chinese electronic medical records. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). Li, X., Zhang, H., & Zhou, X.-H. (2020). Chinese clinical named entity recognition with variant neural structures based on BERT methods. Journal of Biomedical Informatics, 107. https://doi.org/10.1016/j.jbi.2020.103422 Li, Y., Li, W., Sun, F., & Li, S. (2015). Component-enhanced Chinese character embeddings. https://arxiv.org/abs/1508.06669 Liao, Y.-F. (2022). TAT_MOE Corpus [2022] [Available online at https://tggl.naer.edu.tw. Retrieved on 2024/11/13]. Liao, Y.-F., Chang, C.-Y., Tiun, H.-K., Su, H.-L., Khoo, H.-L., Tsay, J. S., Tan, L.-K., Kang, P., Thiann, T.-g., Iunn, U.-G., Yang, J.-H., & Liang, C.-N. (2020). Formosa speech recognition challenge 2020 and Taiwanese across Taiwan corpus. 2020 23rd Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA). https://doi.org/10.1109/O-COCOSDA50338.2020.9295019 Liao, Y.-F., Hsu, W.-H., Pan, C.-M., Wang, W.-J., Pleva, M., & Hladek, D. (2022). Personalized Taiwanese speech synthesis using cascaded ASR and TTS framework. 2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA). https://doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764940 Liao, Y.-F., Tsay, J. S., Kang, P., Khoo, H.-L., Tan, L.-K., Chang, L.-C., Iunn, U.-G., Su, H.-L., Thiann, T.-G., Tiun, H.-K., & Liao, S.-L. (2022). Taiwanese across Taiwan corpus and its applications. 2022 25th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA). https://doi.org/10 .1109/O-COCOSDA202257103.2022.9997977 Limsopatham, N., & Collier, N. (2016). Bidirectional LSTM for named entity recognition in Twitter messages. In B. Han, A. Ritter, L. Derczynski, W. Xu, & T.Baldwin (Eds.), Proceedings of the 2nd workshop on noisy user-generated text (WNUT). The COLING 2016 Organizing Committee. https://aclanthology.org/W16-3920 Lin, Y. (2012). Wenyuan (the origin of the character)[文源] (1st ed.). Zhongxi Book Company. Liu, P., Guo, Y., Wang, F., & Li, G. (2022). Chinese named entity recognition: The state of the art. Neurocomputing, 473. https://doi.org/10.1016/j.neucom.2021.10.101 Liu, W., Xu, T., Xu, Q., Song, J., & Zu, Y. (2019). An encoding strategy based word-character LSTM for Chinese NER. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: Human language technologies, volume 1 (long and short papers). Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1247 Lu, B.-H., Lin, Y.-H., Lee, E.-S. A., & Tsai, R. T.-H. (2024). Enhancing Hokkien dual translation by exploring and standardizing of four writing systems. Luo, Z. (1981). Yinxu shuqi kaoshi [殷虛書契考釋] (4th ed.). Yee Wen Publishing. Ma, L., Luo, N., Wan, T., Hu, C., & Peng, M. (2018). An improved healthcare accessibility measure considering the temporal dimension and population demand of different ages. International Journal of Environmental Research and Public Health, 15(11). https://doi.org/10.3390/ijerph15112421 Magistry, P. (2016). Design of an input method for Taiwanese Hokkien using unsupervized word segmentation for language modeling. Proceedings of the 28th Conference on Computational Linguistics and Speech Processing (ROCLING 2016). Maharjan, R. (2018). The journey of Nepal Bhasa. from decline to revitalization (Master’s thesis). UiT Norges arktiske universitet. Marreddy, M., Oota, S. R., Vakada, L. S., Chinni, V. C., & Mamidi, R. (2022). Am I a resource-poor language? data sets, embeddings, models and analysis for four different nlp tasks in Telugu language. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 22(1). https://doi.org/10.1145/3531535 McCallum, A., & Li, W. (2003). Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003. https://aclanthology.org/W03-0430 Meng, Y., Wu, W., Wang, F., Li, X., Nie, P., Yin, F., Li, M., Han, Q., Sun, X., & Li, J. (2019). Glyce: Glyph-vectors for Chinese character representations. CoRR, abs/1901.10125. http://arxiv.org/abs/1901.10125 Moseley, C., & Nicolas, A. (2010). Atlas of the world’s languages in danger (3rd ed. entirely revised, enlarged and updated.). Unesco. Muller, B., Anastasopoulos, A., Sagot, B., & Seddah, D. (2021). When being unseen from mBERT is just the beginning: Handling new languages with multilingual language models. Muller, B., Sagot, B., & Seddah, D. (2020). Can multilingual language models transfer to an unseen dialect? A case study on north African Arabizi. CoRR, abs/2005.00318. https://arxiv.org/abs/2005.00318 Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., & Liang, X. (2018). doccano: Text annotation tool for human. https://github.com/doccano/doccano National Development Council. (2022). Population projections for the republic of China (Taiwan): 2022-2070. https://gpi.culture.tw/books/1011101128 Ogueji, K., Zhu, Y., & Lin, J. (2021). Small data? no problem! exploring the viability of pretrained multilingual language models for low-resourced languages. In D. Ataman, A. Birch, A. Conneau, O. Firat, S. Ruder, & G. G. Sahin (Eds.), Proceedings of the ciation for Computational Linguistics. https://doi.org/10.18653/v1/2021.mrl-1.11 Parsons, T. (1995). Thematic relations and arguments. Linguistic Inquiry, 26(4). Retrieved July 2, 2024, from http://www.jstor.org/stable/4178917 Pires, T., Schlinger, E., & Garrette, D. (2019). How multilingual is multilingual BERT? Pustejovsky, J. (1991). The Generative Lexicon. Computational Linguistics, 17(4). https://aclanthology.org/J91-4003 Pustejovsky, J. (1995). The Generative Lexicon. The MIT Press. Pustejovsky, J. (2020). 生成詞庫理論 [the Generative Lexicon] (S.-K. Hsieh, Trans.). Linking Publishing. Pustejovsky, J., & Jezek, E. (2011). A guide to Generative Lexicon theory. https://api.semanticscholar.org/CorpusID:226974940 Rais, M., Lachkar, A., Lachkar, A., & El Alaoui Ouatik, S. (2014). A comparative study of biomedical named entity recognition methods based machine learning approach. Technology (CIST). https://doi.org/10.1109/CIST.2014.7016641 Ranathunga, S., Lee, E.-S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural machine translation for low-resource languages: A survey. ACM Comput. Surv., 55(11). https://doi.org/10.1145/3567592 Reinhart, T. (2000). The theta system: Syntactic realization of verbal concepts (tech. rep. OTS working papers in linguistics, 00,01/TL). Utrecht University. Riaz, K. (2010). Rule-based named entity recognition in Urdu. Proceedings of the 2010 named entities workshop. Sehanobish, A., & Song, C. H. (2019). Using Chinese glyphs for named entity recognition. CoRR, abs/1909.09922. http://arxiv.org/abs/1909.09922 Shi, X., Zhai, J., Yang, X., Xie, Z., & Liu, C. (2015). Radical embedding: Delving deeper to Chinese radicals. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). https : / / doi . org / 10 .3115/v1/P15-2098 Shrivastava, S., Bobhate Shrivastava, P., & Ramasamy, J. (2013). Health-care of elderly: Determinants, needs and services. International journal of preventive medicine, 4. https://pubmed.ncbi.nlm.nih.gov/24319566 Song, P., & Tang, W. (2019). The community-based integrated care system in Japan: Health care and nursing care challenges posed by super-aged society. BioScience Trends, 13(3). https://doi.org/10.5582/bst.2019.01173 Sproat, R. (2002). A computational theory of writing systems. Stewart, M., & Roter, D. (1989). Communicating with medical patients. SAGE Publications. https://books.google.com.tw/books?id=nTRrAAAAMAAJ Su, H., Shi, W., Shen, X., Xiao, Z., Ji, T., Fang, J., & Zhou, J. (2022). RoCBert: Robust Chinese BERT with multimodal contrastive pretraining. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th annual meeting of the association for computational linguistics (volume 1: Long papers). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.65 Su, M.-H., Lee, C.-W., Hsu, C.-L., & Su, R.-C. (2022). RoBERTa-based traditional Chinese medicine named entity recognition model. Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022). https://aclanthology.org/2022.rocling-1.8 Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., & Wang, X. (2014). Radical-enhanced Chinese character embedding. The Ministry of Health and Welfare. (2021). White paper on aged society (tech. rep. No. 100185964). https://www.sfaa.gov.tw/SFAA/Pages/Detail.aspx?nodeid=1372&pid=11419# The Ministry of Health and Welfare. (2023). Statistical annual report of medical care, national health insurance (tech. rep.). https://dep.mohw.gov.tw/dos/lp-5103-113-xCat-y111.html Tsai, M.-H., & Lee, H.-F. (2020). A sociolinguistic study on medical professionals’ use of Taiwanese in southern Taiwan. Journal of Taiwanese Languages and Literature, 14. https://doi.org/10.6710/JTLL.201910_14(2).0004 Tsai, M.-H., & Tsao, F.-f. (2014). Teaching Taiwanese for medical purpose: A pragmatic approach to the professionalism of patient-centeredness and Taiwanese vitality. Chang Gung Journal of Humanities and Social Sciences, 7. https://www.airitilibrary.com/Article/Detail/20709455-201410-201412080007-201412080007-295-325 Tsao, F.-F., & Lu, F.-H. (1999). Doctor-elderly patient communication in Taiwan—a discourse analysis approach (Research project NSC88-2411-H007-021). National Science and Technology Council. https://www.grb.gov.tw/search/planDetail?id=448535 Tsao, F.-F., Yang, H.-F., Yao, R.-S., Li, I., Lim, K.-I., Lim, K., Chen, S.-C., Chang, S.-M., Hsu, C.-y., Cheng, C.-y., Huang, C.-Y., Cheng, Y., Liu, H.-H., Lau, S.-h., Pan, K.-g., Su-ying, H., Lu, K.-C., & Luo, J.-P. (Eds.). (2011). Dictionary of frequently-used Taiwan Minnan. https://sutian.moe.edu.tw/zh-hant/ Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li, J., & Wang, G. (2023). GPT-NER: Named entity recognition via large language models. https://arxiv.org/abs/2304.10428 Wang, W.-j., Chen, C.-j., Lee, C.-m., Lai, C.-y., & Lin, H.-h. (2019). Articut: Chinese word segmentation and pos tagging system. https://api.droidtown.co/ Wang, Z., K, K., Mayhew, S., & Roth, D. (2020). Extending multilingual BERT to low-resource languages. https://doi.org/10.48550/arXiv.2004.13640 Wei, T.-C., & Li, Y.-H. (2022). Word order in Taiwanese based on empirical perspectives. Journal of Taiwanese Languages and Literature (2022)17.2. https://doi.org/10.6710/JTLL.202210_17(2).0001 Winata, G., Wu, S., Kulkarni, M., Solorio, T., & Preotiuc-Pietro, D. (2022). Cross-lingual few-shot learning on unseen languages. In Y. He, H. Ji, S. Li, Y. Liu, & C.-H. Chang (Eds.), Proceedings of the 2nd conference of the asia-pacific chapter of the association for computational linguistics and the 12th international joint conference on natural language processing (volume 1: Long papers). Association for Computational Linguistics. https://aclanthology.org/2022.aacl-main.59 Wu, C.-Y., Li, Y.-Y., & Lyver, M. J. (2022). Elderly caregiving quality improvement: A pilot study of the burdens of Vietnamese caregivers in Taiwan. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph19106293 Wu, G., Tang, G., Wang, Z., Zhang, Z., & Wang, Z. (2019). An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2935223 Wu, Q., Lin, Z., Karlsson, B. F., Huang, B., & Lou, J.-G. (2020). Unitrans : Unifying model transfer and data transfer for cross-lingual named entity recognition with unlabeled data [Main track]. In C. Bessiere (Ed.), Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20. International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2020/543 Xu, S. (121). Shuowen jiezi [說文解字]. Yan, J.-H., Zong, C.-Q., & Xu, J.-A. (2023). Nested entity recognition approach in Chinese medical text. Journal of Software. https://doi.org/10.13328/j.cnki.jos.006927] Yang, W.-M., & Chu, W.-J. (2019). Named entity recognition of online medical question answering text. Computer Systems and Applications, 28(2). https://doi.org/10.15888/j.cnki.csa.006760 Yohannes, H. M., & Amagasa, T. (2022). Named-entity recognition for a low-resource language using pre-trained language model. Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. https://doi.org/10.1145/3477314.3507066 Zhang, B., Kazemzadeh, A., & Reese, B. (2022). Shallow parsing for Nepal Bhasa complement clauses. In S. Moeller, A. Anastasopoulos, A. Arppe, A. Chaudhary, A. Harrigan, J. Holden, J. Lachler, A. Palmer, S. Rijhwani, & L. Schwartz (Eds.), Proceedings of the fifth workshop on the use of computational methods in the study of endangered languages. Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.computel-1.8 Zhang, F., & Wang, M. (2017). Medical text entities recognition method base on deep learning. Comput Technol Autom, 36(1). Zhang, K., Zhao, X., Guan, T., Shang, B., Li, Y., & Zan, H. (2020). A platform for entity and entity relationship labeling in medical texts. Journal of Chinese Information Processing, 34(6), Article 36. http://jcip.cipsc.org.cn/CN/Y2020/V34/I6/36 Zhou, F., Han, X., Liu, Q., Li, M., & Yong, L. (2021). Chinese clinical named entity recognition based on stroke-level and radical-level features. https://doi.org/10.1007/978-3-030-74717-6_2 Zhou, J.-S., Dai, X.-Y., Yin, C.-Y., & Chen, J.-J. (2006). Automatic recognition of Chinese organization name based on cascaded conditional random fields. Dianzi Xuebao(Acta Electronica Sinica), 34(5). Zoph, B., Yuret, D., May, J., & Knight, K. (2016). Transfer learning for low-resource neural machine translation. |
Description: | 碩士 國立政治大學 語言學研究所 109555009 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109555009 |
Data Type: | thesis |
Appears in Collections: | [語言學研究所] 學位論文
|
Files in This Item:
File |
Size | Format | |
500901.pdf | 2458Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|