English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52224284      Online Users : 438
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/155001


    Title: AI虛擬導覽員互動對於歷史學習的影響研究 - 以臺灣與香港的二戰記憶數位策展為例
    The Effects of Learners’ Interaction with Artificial Intelligence Virtual Tour Guides on History Learning - A Case Study of Metaverse Digital Curation on Taiwanese Civilians’ War Memory in Hong Kong during the Second World War
    Authors: 邱妍瑛
    Chiu, Yan-Ying
    Contributors: 陳志銘
    藍適齊

    Chen, Chih-Ming
    Lan, Shi-Chi

    邱妍瑛
    Chiu, Yan-Ying
    Keywords: AI虛擬導覽員
    檢索增強生成
    元宇宙數位策展
    歷史學習
    AI Virtual Tour Guide
    Retrieval-Augmented Generation
    Metaverse Digital Curation
    History Learning
    Date: 2024
    Issue Date: 2025-01-02 11:47:03 (UTC+8)
    Abstract: 近年來,隨著數位互動技術發展的日益成熟,可呈現出更多元模態的內容展示,促使實體策展逐漸轉變為數位策展,其策展形式因此變得更加靈活且多元。傳統展覽中依賴真人導覽員進行現場解說,導覽模式也隨著數位科技與人工智慧的發展而有了不同的選擇,AI虛擬導覽員取代真人導覽員已成為新的發展方向。AI虛擬導覽員不僅能提供全天候的服務,還能依據使用者需求即時調整問答內容,從而增強與觀展者的人機互動與個性化體驗,這也顯示出AI虛擬導覽員在現代策展中極具應用潛力。此外,檢索增強生成技術的出現,使AI虛擬導覽員的功能和表現得到了有效的提升。透過外部資料來源與大型語言模型的結合,使得AI虛擬導覽員能夠有效的回應相關的專業知識問題,打破了過去僅限於傳遞基礎資訊的侷限。除了具備檢索和分析大型資料集的能力之外,更能即時生成、提供精確且深入的解答。在增強互動性的同時,也提升了觀展的知識獲取效率與觀展體驗。相較於過去依賴人工預設的簡單對話框架,基於檢索增強生成技術發展的AI虛擬導覽員可以展現出更高的對話準確度與靈活性,能夠根據不同觀展者的提問來進行適性的回應內容調整,提供更具針對性和即時性的回應。因此,本研究透過Langchain發展以檢索增強生成技術為基礎之「AI虛擬導覽員」,讓策展者能夠自行提供「AI虛擬導覽員」應答時的知識於資料庫中,讓「AI虛擬導覽員」在回應觀展者所提出問題時,能夠依據策展者所提供的專業知識內容給予適切的回應。

    本研究將「AI虛擬導覽員」應用於輔助歷史學習,為了探討「AI虛擬導覽員」輔以進行歷史學習對於學習者的影響,本研究採用真實驗研究法,以40位有修過近代史的歷史相關系所在校及應屆畢業生,且繁體中文為母語者為研究對象,並隨機選取其中20個學生為使用「AI虛擬導覽員」輔以進行「臺灣與香港的二戰記憶」元宇宙數位策展之觀展學習的實驗組,其他剩餘的20個學生則分派為搭配文本輔以進行「臺灣與香港的二戰記憶」元宇宙數位策展之觀展學習的控制組,探討兩種學習模式在學習成效、學習動機、科技接受度,以及認知負荷上是否具有顯著的差異。此外,也深入探討使用這兩種不同學習模式的不同先備知識與認知風格學習者,在學習成效、學習動機、科技接受度,以及認知負荷上是否具有顯著的差異。另外,本研究也進一步探討實驗組學習者對於聊天機器人優使性的感受,並進一步探討不同先備知識與認知風格的實驗組學習者在聊天機器人優使性的感受上是否具有顯著的差異。最後,本研究以半結構式訪談了解學習者使用這兩種不同學習模式,在觀展過程中的學習歷程與感受。此外,也透過問答內容互動分析,了解學習者是如何與「AI虛擬導覽員」進行互動。

    研究結果發現,使用「AI虛擬導覽員」輔助或搭配文本輔以進行「臺灣與香港的二戰記憶」元宇宙數位策展之觀展學習,皆能有效促進學習者整體與理解面向的學習成效。此外,對於不同先備知識的學習者而言,使用「AI虛擬導覽員」能有效促進高低不同先備知識學習者於理解面向的學習成效,以及低先備知識學習者的整體學習成效。然而,使用「AI虛擬導覽員」卻使高先備知識學習者於批判思考面向的學習成效有所下降,結合統計與對話互動內容分析結果,本研究推測其學習成效可能已超越傳統評分標準所能檢視的範疇,展現出更高層次的認知能力與思維發展。在學習動機方面,相較於低先備之學習者,使用「AI虛擬導覽員」能有效提升高先備知識學習者內在學習動機之正面因素的感知價值。而對於不同認知風格學習者而言,唯有使用「AI虛擬導覽員」輔以進行「臺灣與香港的二戰記憶」元宇宙數位策展之觀展學習,才能夠促進文字型學習者的整體學習成效。在「AI虛擬導覽員」優使性的部分,除了安全與隱私保護之外,實驗組學習者對於本研究所設計的「AI虛擬導覽員」的優使性感受均高於中位數,顯示學習者感受本研究發展之AI虛擬導覽員具有良好的優使性。最後,根據訪談結果,部分實驗組學習者認為使用「AI虛擬導覽員」能有助於降低學習過程中的認知負荷,並能有效協助學習者釐清當下的學習情境狀況。並且實驗組學習者認為使用「AI虛擬導覽員」有助於從不同角度深入了解策展覽內容,因而改變其觀點與立場。此外,實驗組學習者認為「AI虛擬導覽員」提問互動的學習門檻低,且有助於提高觀展過程的沈浸感。最後,本研究提出使用「AI虛擬導覽員」輔以進行元宇宙數位策展之觀展學習的改善建議。在未來研究方向上,本研究建議將「AI虛擬導覽員」應用於不同類型之策展場域,並探究其對於學習成效的影響,以及針對不同問答互動方式對於觀展成效的影響進行深入的探討。

    整體而言,隨著人工智慧技術的快速發展,AI虛擬導覽員在數位策展中的應用前景將更為寬廣,可能成為現代策展中不可或缺的導覽輔助工具。本研究之研究結果顯示使用「AI虛擬導覽員」輔以進行「臺灣與香港的二戰記憶」元宇宙數位策展之觀展學習,其所設計的人機互動模式,有助於提升學習者的學習表現,對於促進以數位策展輔以進行歷史學習之教學應用具有貢獻。
    In recent years, with the rapid maturation of digital interactive technologies, exhibitions have begun to feature more diverse modes of content presentation, leading to a shift from physical to digital curation. This transformation has made curatorial formats more flexible and varied. Traditionally, human guides were relied upon for on-site explanations. However, with the advancement of digital technology and artificial intelligence (AI), new modes of guidance have emerged. AI virtual guides, increasingly replacing human guides, offer round-the-clock service and can adjust their responses in real-time based on user needs, enhancing human-computer interaction and personalizing the visitor experience. This highlights the significant potential of AI virtual guides in modern digital curation.

    Additionally, the advent of retrieval-augmented generation technology has enhanced the functionality and performance of AI virtual guides. By integrating external data sources with large language models, AI virtual guides can respond to professional knowledge-based questions more effectively, overcoming the limitations of merely providing basic information. Beyond retrieving and analyzing large datasets, they can also generate accurate and in-depth responses in real-time. This improves both interactivity and the efficiency of knowledge acquisition, enhancing the visitor experience. Compared to the simple pre-programmed dialogue frameworks of the past, AI virtual guides built on retrieval-augmented generation technology demonstrate greater conversational accuracy and flexibility. They can adjust responses according to different visitors’ inquiries, providing more targeted and timely information.

    Therefore, this study developed AI virtual tour guides based on retrieval-augmented generation technology using Langchain. This enables curators to independently add their expert knowledge to the database, ensuring that the AI virtual tour guides can offer precise responses tailored to the expertise provided. The AI virtual tour guides were applied in this study to assist in history learning. Specifically, the study explored the impact of the AI virtual tour guides on learners’ experience during the metaverse digital curation. A quasi-experimental research design was used, with 40 students from history-related departments who were fluent in Traditional Chinese and had studied modern history. Twenty students were randomly assigned to the experimental group, where they used the AI virtual tour guides to engage with the digital curation, while the remaining 20 students, assigned to the control group, used accompanying text for the same digital curation. The study investigated whether there were significant differences between these two learning modes in terms of learning performance, learning motivation, technology acceptance, and cognitive load.

    Moreover, the study further analyzed whether learners with different levels of prior knowledge and cognitive styles exhibited significant differences in these areas when engaging with either learning mode. The research also delved into the experimental group’s perceptions of the AI virtual tour guides’ usability, exploring whether usability perceptions varied among learners with different levels of prior knowledge and cognitive styles. Semi-structured interviews were conducted to better understand the learning experiences of participants using both learning modes. Additionally, interaction analysis was performed to explore how learners interacted with the AI virtual tour guides.

    The results showed that both the AI virtual tour guides and the accompanying text facilitated effective learning performance, particularly in terms of comprehension, for the metaverse digital curation on Taiwanese Civilians’ War Memory in Hong Kong during the Second World War. For learners with different levels of prior knowledge, the AI virtual tour guides improved comprehension outcomes for both high- and low-prior-knowledge learners, as well as the overall learning performance of low-prior-knowledge learners. However, for high-prior-knowledge learners, critical thinking outcomes decreased. Based on statistical analyses and interactive dialogue content, the study suggests that their learning performance may have exceeded what could be captured by traditional scoring, reflecting the development of higher-order thinking skills. In terms of learning motivation, compared to low-prior-knowledge learners, high-prior-knowledge learners perceived greater value in the positive aspects of intrinsic motivation when using the AI virtual tour guides. For learners with different cognitive styles, only those using AI virtual tour guides for the metaverse digital curation on Taiwanese Civilians’ War Memory in Hong Kong during the Second World War showed improved overall learning performance, particularly among text-oriented learners. Interview feedback revealed that some learners felt the AI virtual tour guides reduced their cognitive load and clarified the learning context during the digital curation. Learners also reported that the AI virtual tour guides offered multiple perspectives, which led them to reassess their viewpoints. Furthermore, the virtual tour guides lowered the barrier to asking questions and enhanced the immersive nature of the digital curation experience.

    Based on these findings, the study offers recommendations for improving the use of AI virtual tour guides in metaverse digital curation. Future research should focus on applying AI virtual tour guides in various digital curation contexts to examine their effects on learning performance and the influence of different interaction methods on digital curation engagement.

    In summary, as artificial intelligence technology continues to develop rapidly, AI virtual tour guides hold significant potential in digital curation and are likely to become indispensable tools in modern digital curation. This study’s findings suggest that using the AI virtual tour guides for the metaverse digital curation on on Taiwanese Civilians’ War Memory in Hong Kong during the Second World War effectively enhances learners' performance and contributes to the application of digital curation in history education.
    Reference: 一、中文文獻
    王淮真(2001)。旅客對導覽解說滿意度之研究─以國立故宮博物院為例。中國 文化大學觀光事業研究所,台北市。
    吳紹群(2018)。檔案數位互動展之觀眾滿意度與教育效果研究:以「同安潮新媒體藝術展」為例。圖書與資訊學刊,93,43-74。
    林巧敏、李佩珊(2015)。檔案展覽互動展示設計與規劃之探討。大學圖書館,19(1),1-20。
    施登騰(2018)。博物館之聲~論數位語音與數位轉譯的應用。博物淡水,10, 08-27。
    翁榮秀(2023)。元宇宙數位策展於歷史學習成效之影響研究—以二戰在香港台灣平民百姓被拘留之歷史為例。國立政治大學圖書資訊與檔案學研究所,台北市。
    藍適齊(2015)。「帝國」(未盡)的殖民/戰爭責任:二戰後在香港被拘留遣返的台灣平民。載於呂芳上 (主編) ,在戰爭的歷史與記憶:戰後變局與戰爭記憶 (187–222頁)。台北市:國史館。
    阮明淑(2014)。公共圖書館的創新服務要角-館員與數位內容策展。臺北市立圖書館館訊, 31(4),30-49。
    Sasaki Toshinao(2012)。Curation策展的時代: 為碎片化資訊找到連結(郭菀琪譯)。臺北市:經濟新潮。(原著出版年:2011)

    二、英文文獻
    “What Is Digital Curation?” Digital Curation Centre, accessed November 29, 2020, https://www.dcc.ac.uk/about/digital-curation.

    Adams, W. C. (2015). Conducting semi-structured interviews. In J. S. Wholey, H. P. Harty, & K. E. Newcomer (Eds.), Handbook of practical program evaluation (pp. 492-505). Jossey-Bass.
    Ahmed, I., Jeon, G., & Piccialli, F. (2022). From artificial intelligence to explainable artificial intelligence in Industry 4.0: A survey on what, how, and where. IEEE Transactions on Industrial Informatics, 18(8), 5031-5042. https://doi.org/10.1109/TII.2022.3146552
    Alkaissi H., & McFarlane, S. I. (2023). Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus. 15(2), e35179. https://doi.org/10.7759/cureus.35179.
    Alwi, A., & McKay, E. (2015). Experiencing museum learning through multimedia instructions. Jurnal Teknologi, 77(29). https://doi.org/10.11113/jt.v77.6844
    Al-Zubaide, H., & Issa, A. A. (2011, November). Ontbot: Ontology based chatbot. In International Symposium on Innovations in Information and Communications Technology (pp. 7-12). IEEE.
    Anderson, J., & Lee, H. (2020). Enhancing historical learning with chatbot-assisted interactive simulations. Journal of Educational Technology & Society, 23(4), 13-24.
    Ashfaque, M. W. (2022). Analysis of different trends in chatbot designing and development: A review. ECS Transactions, 107(1), 7215-7227. https://doi.org/10.1149/10701.7215ecst
    Bhargava, R. (2012). How curation could save the internet (and your brand). Communication World, 29(1), 20-23.
    Bickmore, T. W., Vardoulakis, L. M. P., & Schulman, D. (2013). Tinker: A relational agent museum guide. Autonomous Agents and Multi-Agent Systems, 27, 254-276. https://doi.org/10.1007/s10458-012-9216-7
    Bickmore, T., & Picard, R. (2005). Establishing and maintaining long-term human-computer relationships. ACM Transactions on Computer Human Interaction, 12(2), 293-327.
    Bitgood, S. (2009). When is “museum fatigue” not fatigue? Curator: The Museum Journal, 52(2), 193-202.
    Blancas, M., Wierenga, S., Ribbens, K., Rieffe, C., Knoch, H., Billib, S., & Verschure, P. (2021). Active learning in digital heritage: Introducing geo-localisation, VR, and AR at Holocaust historical sites. In V. G. Walden (Ed.), Digital Holocaust memory, education and research (pp. 145-176). Springer International Publishing.
    Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638-663.
    Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational goals (Handbook 1: Cognitive domain). Longmans.
    Borsci, S., Malizia, A., Schmettow, M., Van Der Velde, F., Tariverdiyeva, G., Balaji, D., & Chamberlain, A. (2022). The Chatbot Usability Scale: The design and pilot of a usability scale for interaction with AI-based conversational agents. Personal and Ubiquitous Computing, 26, 95-119. https://doi.org/10.1007/s00779-021-01582-9
    Bowen, J. P., Bennett, J., & Johnson, J. (1998, April). Virtual visits to virtual museums. In Museums and the Web (Vol. 98).
    Brachten, F., Brünker, F., Frick, N. R., & et al. (2020). On the ability of virtual agents to decrease cognitive load: An experimental study. Information Systems and e-Business Management, 18, 187-207. https://doi.org/10.1007/s10257-020-00471-7
    Brooke, J. (1996) SUS—A quick and dirty usability scale. Usability Evaluation in Industry, 189, 4-7.
    Brown, D. J., & Smith, G. G. (2018). Intelligent tutoring systems: Can artificial intelligence humanize the learning process? Educational Technology, 58(3), 54-58.
    Campitelli, G. (2015). Memory behavior requires knowledge structures, not memory stores. Frontiers in Psychology, 6, 1696. https://doi.org/10.3389/fpsyg.2015.01696
    Chan, S., & Cope, A. (2015). Strategies against architecture: Interactive media and transformative technology at the Cooper Hewitt, Smithsonian Design Museum. Curator: The Museum Journal, 58(3), 352-368.
    ChanLin, L. (2001). Formats and prior knowledge on learning in a computer-based lesson. Journal of Computer Assisted Learning, 17(4), 409-419.
    Chen, C. M., Li, M. C., & Chen, T. C. (2018). A collaborative reading annotation system with gamification mechanisms to improve reading performance. In Proceedings of the 7th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 188-193). https://doi.org/10.1109/IIAI-AAI.2018.00044
    Chen, X. (2023). ChatGPT and its possible impact on library reference services. Internet Reference Services Quarterly, 27(2), 121-129. https://doi.org/10.1080/10875301.2023.2181262
    Cheng, M. T., She, H. C., & Annetta, L. A. (2015). Game immersion experience: Its hierarchical structure and impact on game-based science learning. Journal of Computer Assisted Learning, 31(3), 232-253.
    Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. Journal of Consumer Research, 12(2), 125-134.
    Constantopoulos, P., & Dallas, C. (2008). Aspects of a digital curation agenda for cultural heritage. In 2008 IEEE International Conference on Distributed Human-Machine Systems (pp. 1-6). IEEE.
    Corredor, J. (2006). General and domain-specific influence of prior knowledge on setting of goals and content use in museum websites. Computers & Education, 47(2), 207-221.
    Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: The experience of play in work and leisure. Jossey-Bass.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
    Diederich, S., Brendel, A., & Kolbe, L. M. (2019). On conversational agents in information systems research: Analyzing the past to guide future work. In Proceedings of the 14th International Conference on Wirtschaftsinformatik (pp. 1550-1564).
    Falk, J. H., & Dierking, L. D. (2008). Enhancing visitor interaction and learning with mobile technologies. In L. Tallon & K. Walker (Eds.), Digital technologies and the museum experience: Handheld guides and other media (pp. 19-33). Altamira Press.
    Falk, J. H., Koran, J. J., & Dierking, L. D. (1985). Predicting visitor behavior. Curator, 28(4), 249-257.
    Fernandez, A., Insfran, E., & Abrahão, S. (2011). Usability evaluation methods for the web: A systematic mapping study. Information and Software Technology, 53(8), 789-817.
    Fidan, M., & Gencel, N. (2022). Supporting the instructional videos with Chatbot and peer feedback mechanisms in online learning: the effects on learning performance and intrinsic motivation. Journal of Educational Computing Research, 60(7), 1716-1741. https://doi.org/10.1177/07356331221077901
    Filippini-Fantoni, S., & Bowen, J. P. (2008). Mobile multimedia: Reflections from ten years of practice. In L. Tallon & K. Walker (Eds.), Digital technologies and the museum experience: Handheld guides and other media (pp. 79-96).
    Finstad, K. (2010). The usability metric for user experience. Interacting with Computers, 22(5), 323-327. https://doi.org/10.1016/j.intcom.2010.04.004
    Forkosh Baruch, A., & Gadot, R. (2021). Social curation experience: Towards authentic learning in preservice teacher training. Technology, Knowledge and Learning, 26, 105-122.
    Grinder, A. L., & McCoy, E. S. (1985). The good guide: A source book for interpreters, docents, and tour guides. Ironwood Press.
    Handley, A. (2012). What content curation can do for your business and three things it can't. Communication World, 29(1), 48.
    Herther, N. K. (2012a). Content curation: Quality judgement and the future of media and web search. Searcher: The Magazine for Database Professionals, 20(7), 30-41.
    Hirose, M., & Tanikawa, T. (2010). Overview of the digital museum project. In Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry (VRCAI '10) (pp. 11-16). Association for Computing Machinery. https://doi.org/10.1145/1900179.1900181
    Huang, Y., Jiang, Z., Liu, Y., & Wang, Y. (2011). Augmented reality in exhibition and entertainment for the public. In Handbook of augmented reality (pp. 707-720).
    Huang, Y.-M., Huang, Y.-M., Liu, C.-H., & Tsai, C.-C. (2013). Applying social tagging to manage cognitive load in a Web 2.0 self-learning environment. Interactive Learning Environments, 21(3), 273-289.
    Jafarpour, S., Burges, C. J., & Ritter, A. (2010). Filter, rank, and transfer the knowledge: Learning to chat. Advances in Ranking, 10, 2329-9290.
    Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., & Neubig, G. (2023). Active retrieval augmented generation. arXiv preprint. https://doi.org/10.48550/arXiv.2305.06983
    Jones, P., & Brown, K. (2021). Personalized learning with chatbots: Scoping the potential benefits and challenges. Educational Media International, 58(2), 107-120.
    Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. https://doi.org/10.3389/fpsyg.2017.01997
    Kollöffel, B. (2012). Exploring the relation between visualizer-verbalizer cognitive styles and performance with visual or verbal learning material. Computers & Education, 58, 697-706.
    Kopp, S., Gesellensetter, L., Krämer, N. C., & Wachsmuth, I. (2005). A conversational agent as museum guide: Design and evaluation of a real-world application. In T. Panayiotopoulos, J. Gratch, R. Aylett, D. Ballin, P. Olivier, & T. Rist (Eds.), Intelligent virtual agents (Vol. 3661, pp. 28-38). Springer. https://doi.org/10.1007/11550617_28
    Kortbek, K. J., & Grønbæk, K. (2008). Interactive spatial multimedia for communication of art in the physical museum space. In MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia (pp. 609-618). https://doi.org/10.1145/1459359.1459441
    Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2022). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28, 937-1018. https://doi.org/10.1007/s10639-022-11177-3
    Lake-Hammond, A., & Waite, N. (2010). Exhibition design: Bridging the knowledge gap. The Design Journal, 13(1), 77-98. https://doi.org/10.2752/175630610X12625021980022
    Lappalainen, Y., & Narayanan, N. (2023). Aisha: A custom AI library chatbot using the ChatGPT API. Journal of Web Librarianship, 17(3), 37-58. https://doi.org/10.1080/19322909.2023.2221477
    Lee, B. A. (2006). A study of methods for vitalizing museum communication with the fusion of mobile technology. Humanities Contents, 7, 23-50.
    Lee, J. W., Kim, Y., & Lee, S. H. (2019). Digital museum and user experience: The case of Google Art & Culture. In Proceedings of the International Symposium on Electronic Art.
    Lee, J. W., Zhang, J., Zimmerman, A. S., & Lucia, A. (2009). DataNet: An emerging cyberinfrastructure for sharing, reusing, and preserving digital data for scientific discovery and learning. AIChE Journal, 55(11), 2757-2764.
    Lee, L.-K., Fung, Y.-C., Pun, Y.-W., Wong, K.-K., Yu, M. T.-Y., & Wu, N.-I. (2020). Using a multiplatform chatbot as an online tutor in a university course. In 2020 International Symposium on Educational Technology (ISET) (pp. 53-56). IEEE.
    Lee, S. M. (2019). A study of user experience of multiplex cinema app. Journal of Digital Contents Society, 20(9), 1799-1807. https://doi.org/10.9728/dcs.2019.20.9.1799
    Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Yih, W. T., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33, 9459-9474.
    Machidon, O.-M., Tavčar, A., Gams, M., & Duguleană, M. (2020). Culturalerica: A conversational agent improving the exploration of European cultural heritage. Journal of Cultural Heritage, 41, 152-165. https://doi.org/10.1016/j.culher.2019.07.010
    McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60(1), 48-58.
    Min, J. E., & Ji, Y. H. (2016). A study on the notion and training of “cultural mediator”: Focusing on the case of “médiateur culturel” in France. Journal of Arts Management and Policy, 37, 190-191.
    Moon, C. H., & Jeong, S. M. (2009). A study on the tourist's satisfaction with the SERVPERF of the museum: Case study of Jeonju National Museum and Jeonbuk Province Art Museum. Journal of Regional Studies, 17(1), 3-27.
    Navarrete, T. (2019). Digital heritage tourism: Innovations in museums. World Leisure Journal, 61(3), 200-214.
    Noetel, M., Griffith, S., Delaney, O., Harris, N. R., Sanders, T., Parker, P., & Lonsdale, C. (2022). Multimedia design for learning: An overview of reviews with meta-analysis. Review of Educational Research, 92(3), 413-454.
    Okonkwo, C.W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2, 100033.
    Omotunde, C. T. (2023). Examining undergraduates’ perceptions of chatbots in learning: An integration of technology acceptance model with the value-based adoption model. Online Journal of Educational Sciences and Technology, 5 (1), 307-326.
    OpenAI. (2023). GPT-4 technical report. arXiv.org. https://arxiv.org/abs/2303.08774v3
    Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71. https://doi.org/10.1207/S15326985EP3801_8
    Quan-Haase, A., & Marti, K. (2013). Digital curation and the networked audience of urban events: Expanding La Fiesta de Santo Tomás from the physical to the virtual environment. International Communication Gazette, 75(5), 521-537.
    Riding, R. J., & Sadler-Smith, E. (1997). Cognitive style and learning strategies: Some implications for training design. International Journal of Training and Development, 1(3), 199-208.
    Ritter, A., Cherry, C., & Dolan, W. B. (2011). Data-driven response generation in social media. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 583-593). Association for Computational Linguistics.
    Robinson, E. S., Sherman, I. C., Curry, L. E., & Jayne, H. H. F. (1928). The behavior of the museum visitor. Publications of the American Association of Museums (New Series), 72.
    Samaroudi, M., Echavarria, K. R., & Perry, L. (2020). Heritage in lockdown: Digital provision of memory institutions in the UK and US of America during the COVID-19 pandemic. Museum Management and Curatorship, 35, 337-361.
    Schrader, C., & Bastiaens, T. J. (2012). The influence of virtual presence: Effects on experienced cognitive load and learning outcomes in educational computer games. Computers in Human Behavior, 28(2), 648-658.
    Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017). Design and evaluation of a short version of the User Experience Questionnaire (UEQ-S). International Journal of Interactive Multimedia and Artificial Intelligence, 4, 103.
    Sernani, P., Vagni, S., Falcionelli, N., Mekuria, D. N., Tomassini, S., & Dragoni, A. F. (2020). Voice interaction with artworks via indoor localization: A vocal museum. In L. De Paolis & P. Bourdot (Eds.), Augmented reality, virtual reality, and computer graphics (Vol. 12243, pp. 55-64). Springer. https://doi.org/10.1007/978-3-030-58468-9_5
    Sharma, A., Undheim, P. E., & Nazir, S. (2023). Design and implementation of AI chatbot for COLREGs training. WMU Journal of Maritime Affairs, 22, 107-123. https://doi.org/10.1007/s13437-022-00284-0
    Shih, D.-T. (2020). Wayfinding design of museum docent chatbot with curation based on gamification. In Sustainable Innovation in Education and Technology: Education and Awareness of Sustainability (pp. 977-980).
    Štekerová, K. (2022). Chatbots in museums: Is visitor experience measured? Czech Journal of Tourism, 11(1-2), 14-31. https://doi.org/10.2478/cjot-2022-0002
    Sylaiou, S., & Fidas, C. (2022). First results of a survey concerning the use of digital human avatars in museums and cultural heritage sites. In Proceedings of the 2022 International Conference on Interactive Media, Smart Systems and Emerging Technologies (IMET) (pp. 1-4). IEEE. https://doi.org/10.1109/IMET54801.2022.9929455
    Sylaiou, S., & Fidas, C. (2022). Virtual humans in museums and cultural heritage sites. Applied Sciences, 12(19), 9913. https://doi.org/10.3390/app12199913
    Sylaiou, S., Kasapakis, V., Gavalas, D., & Dzardanova, E. (2020). Avatars as storytellers: Affective narratives in virtual museums. Personal and Ubiquitous Computing, 24(6), 829-841. https://doi.org/10.1007/s00779-019-01358-2
    Sylaiou, S., Mania, K., Paliokas, I., Pujol, L., Killintzis, V., & Liarokapis, F. (2017). Exploring the educational impact of diverse technologies in online virtual museums. International Journal of Arts and Technology, 10(1), 58. https://doi.org/10.1504/IJART.2017.083907
    Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80(4), 242-256. https://doi.org/10.1037/0022-0663.80.4.242
    Van den Broeck, E., Zarouali, B., & Poels, K. (2019). Chatbot advertising effectiveness: When does the message get through? Computers in Human Behavior, 98, 150-157.
    Varitimiadis, S., Kotis, K., Pittou, D., & Konstantakis, G. (2021). Graph-based conversational AI: Towards a distributed and collaborative multi-chatbot approach for museums. Applied Sciences, 11(19), 9160. https://doi.org/10.3390/app11199160
    Vassos, S., Malliaraki, E., dal Falco, F., Di Maggio, J., Massimetti, M., Nocentini, M. G., & Testa, A. (2016, November). Art-bots: Toward chat-based conversational experiences in museums. In Proceedings of the International Conference on Interactive Digital Storytelling (pp. 433-437). Springer, Cham.
    Wang, X., & Jiang, Z. (2021). Research on digital exhibition design of former residence memorial hall based on IPOP theory. In Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence (pp. 379-387).
    Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo, and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136. https://doi.org/10.1109/JAS.2023.123618
    Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., & Hu, X. (2024). Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. ACM Transactions on Knowledge Discovery from Data. Just accepted. https://doi.org/10.1145/3649506
    Yin, J., Goh, T.-T., Yang, B., & Yu, X. (2021). Conversation technology with micro-learning: The impact of chatbot-based learning on students’ learning motivation and performance. Journal of Educational Computing Research, 59(1), 154-177. https://doi.org/10.1177/0735633120952067
    Zarouali, B., Van den Broeck, E., Walrave, M., & Poels, K. (2018). Predicting consumer responses to a chatbot on Facebook. Cyberpsychology, Behavior, and Social Networking, 21(8), 491-497.
    Zheng, Q., Tang, Y., Liu, Y., Liu, W., & Huang, Y. (2022). UX research on conversational human-AI interaction: A literature review of the ACM Digital Library. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI '22) (pp. 1-24). Association for Computing Machinery. https://doi.org/10.1145/3491102.3501855
    Zumstein, D., & Hundertmark, S. (2017). Chatbots: An interactive technology for personalized communication, transactions, and services. IADIS International Journal on WWW/Internet, 15(1), 96-109.
    Description: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    111155001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111155001
    Data Type: thesis
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    500101.pdf7321KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback