Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/150224
|
Title: | 分析原住民部落崩塌與農地關係 — 以石磊與宇老部落為例 Analysis of the relation between farmland and landslide in areas of indigenous settlements — A case study in Quri and Uraw tribes |
Authors: | 林亭均 Lin, Ting-Chun |
Contributors: | 林士淵 Lin, Shih-Yuan 林亭均 Lin, Ting-Chun |
Keywords: | 崩塌 農地 地理資訊系統 原住民部落 Landslide Farmland Geographic Information System Indigenous settlements |
Date: | 2024 |
Issue Date: | 2024-03-01 13:59:03 (UTC+8) |
Abstract: | 臺灣地區位處板塊交界帶,陡峭的地形加上颱風伴隨而來的強降雨,使得山區崩塌及土石流等事件頻傳,而這些崩塌與高山農業發展之間是否存在關聯性,一直為眾人所關注的議題之一。 儘管前人曾針對石磊及宇老部落進行農地與崩塌間分析,得出兩者間無明顯關聯性之結論,但考量相隔時間較長,近年狀況不明。本研究將接續前人研究,同樣以石磊及宇老部落為研究範圍,自2004至2021年間,分別數化不同年度的崩塌及農地資料,並以部落整體、邊坡單元及網格三種不同空間範圍,利用地理資訊系統個別分析農地與崩塌於各年度的空間分布及面積變化,同時,研究將深入探討兩者在長時間序列下的相互影響情形,以了解崩塌與農地間是否存在相關性。 而最終研究結果顯示,石磊及宇老部落發生崩塌主原仍為坡度、地形及距河流遠近等因素,崩塌與農地間應無明顯關聯性。 Taiwan is located at the junction of tectonic plates, and its steep terrain, coupled with heavy rainfall from typhoons, results in frequent events such as landslides and debris flows in mountainous areas. The potential correlation between these landslides and the development of high-altitude agriculture has been a topic of concern. Although previous studies have analyzed the relationship between farmland and landslides in the Quri and Uraw tribes, showing no apparent correlation. Considering the age of the research data and its limited analysis to a single year, it is uncertain how these factors have changed over a long time series. Therefore, this study builds upon previous research, focusing on the Quri and Uraw tribes from 2004 to 2021. Digitizing landslide and farmland data for various years, the study employs three spatial scales—tribal overall, slope, and grid—to individually analyze the spatial distribution and area changes of landslides and farmland each year using Geographic Information System. The study also examines the mutual impact between the two over a long time series to understand whether there is a correlation between landslides and farmland. The final research findings indicate that the primary factors contributing to landslides in the Quri and Uraw tribes are still slope, topography, and proximity to rivers. Therefore, it can be inferred that there is no apparent correlation between landslides and agricultural activities in these indigenous settlements. |
Reference: | 一、英文參考文獻 1.Bruschi, V. M., Bonachea, J., Remondo, J., Gómez-Arozamena, J., Rivas, V., Barbieri, M., Capocchi, S., Soldati, M., and Cendrero, A., 2013, “Land management versus natural factors in land instability: some examples in northern Spain”, Environ Manage, 52(2), 398-416. 2.Chan, H. C., Chen, Y.-C., Lee, J.-T., and Wen, Y.-t., 2021, “ GIS-Based Landslide Susceptibility Mapping using Logistic Regression, Instability Index, and Support Vector Machine: Case Study of the Jingshan River, Taiwan”, Journal of Marine Science and Technology. 3.Dai, F. C., and Lee, C. F. , 2002, “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong”, Geomorphology, 42(3), 213-228. 4.Glade, T., 2003, “Landslide occurrence as a response to land use change: a review of evidence from New Zealand”, CATENA, 51(3), 297-314. 5.Guo, C., Montgomery, D. R., Zhang, Y., Wang, K., and Yang, Z., 2015, “Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China”, Geomorphology, 248, 93-110. 6.Gurung, A., Gurung, O. P., and Karki, R., 2013, “Improper Agricultural Practices Lead to Landslide and Mass Movementdisasters: A Case Study Based on Upper Madi Watershed, Nepal”, Emirates Journal of Food and Agriculture, 30-38. 7.Karsli, F., Atasoy, M., Yalcin, A., Reis, S., Demir, O., and Gokceoglu, C., 2009, “Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey)”, Environmental Monitoring and Assessment, 156(1), 241-255. 8.Li, P., Deng, Q., Liu, L., Yang, X., and Zhang, L., 2022, “Landslide Susceptibility Evaluation in Beichuan Based on Frequency Ratio and Analytic Hierarchy Process”, World Scientific Research Journal, 8(6), 156-168. 9.Lombardo, L., and Mai, P. M., 2018, “Presenting logistic regression-based landslide susceptibility results”, Engineering Geology, 244, 14-24. 10.Mugagga, F., Kakembo, V., and Buyinza, M., 2012, “Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides”, CATENA, 90, 39-46. 11.Pacheco Quevedo, R., Velástegui Montoya, A., Montalvan-Burbano, N., Morante, F., Korup, O., and Rennó, C., 2023, “Land use and land cover as a conditioning factor in landslide susceptibility: a literature review”. 12.Perotto-Baldiviezo, H., Thurow, T., Smith, C., Fisher, R., and Wu, X., 2004, “GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agriculture”, ecosystems and environment, 103(1), 165-176. 13.Pourghasemi, H. R., Pradhan, B., and Gokceoglu, C., 2012, “ Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran”, Natural Hazards, 63(2), 965-996. 14.Senouci, R., Taibi, N.-E., Teodoro, A. C., Duarte, L., Mansour, H., and Yahia Meddah, R., 2021, “GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria”, Sustainability, 13(2). 15.Tien Bui, D., Ho, T. C., Revhaug, I., Pradhan, B., and Nguyen, D. B., 2014, “Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. In M. Buchroithner, N. Prechtel, and D. Burghardt (Eds.) ”, Cartography from Pole to Pole: Selected Contributions to the XXVIth International Conference of the ICA, Dresden 2013 (pp. 303-317). Springer Berlin Heidelberg. 16.van Westen, C. J., Rengers, N., and Soeters, R., 2003, “Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment”, Natural Hazards, 30, 399-419. 17.Xie, M., Esaki, T., and Zhou, G., 2004, “GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model”, Natural Hazards, 33(2), 265-282.
二、中文參考文獻 1.日宏煜、羅恩加,2018,「從「酵素」到「醬」:當代泰雅族飲食流變的文化地景」,『中國飲食文化』,14(2),175-214。 2.王文能,2019,「大規模崩塌的地質特性與九份二山崩塌案例」,『技師期刊』,(87),43-51。 3.吳俊毅、蔡喬文、陳樹群,2016,「高屏溪流域崩塌地之地形特徵分析」,『中華水土保持學報』,47(3),156-164。 4.吳俊鋐,2014,「以崩塌率依據建構邏輯式迴歸崩塌潛勢評估模式」,『中華水土保持學報』,45(4)。 5.李承玫、林雪美,2019,「宜蘭縣大同鄉土地利用與坡地崩塌之風險分析」,『工程環境會刊』,(39),119-147。 6.李錫堤、費立沅,2011,「蘭陽溪流域之山崩土石流潛在危害預測」,『前瞻科技與管理』,1(2),67-83。 7.李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔,2012,「應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估」,『中華水土保持學報』, 43(2),167-176。 8.官大偉,2015,「泰雅族家園生計實踐在當地社會的義涵」,『台灣社會研究季刊』,(98),305-318。 9.張孟瑄,2015,「數位化原住民農耕知識之策略─以尖石泰雅族部落為例」,國立政治大學地政學系碩士論文:臺北市。 10.陳志豪、林慶偉、陳勉銘、張維恕、劉守恆,2011,「多時序衛星影像在崩塌研究之應用-以高雄縣荖濃溪為例」,『中華防災學刊』,3(1),25-38。 11.陳怡睿、林洧全、謝舜傑,2011,「坡地利用影響山崩潛勢之評估模式建置—以寶來地區歷經莫拉克颱風為例」,『Journal of Chinese Soil and Water Conservation』,42(3),251-262。 12.陳昆廷、蔡光榮、王宣惠、林欽川,2008,「多變量不安定指數分析法應用於屏東山區道路邊坡崩塌潛感評估模式之建置研究」,『中興工程』,(100),65-72。 13.陳曉琪、林家榮、劉昌文,2006,「石門水庫集水區崩塌區位與土地利用相關性之探討」,『林業研究季刊』,79-91。 14.陳樹群、翁愷翎、吳俊鋐,2010,「玉峰溪集水區崩塌特性與崩塌體積之探討」,『中華水土保持學報』,41(3),217-229。 15.黃韋凱、朱晃葵、羅佳明、王晉倫、鄭宏昭、呂育勳、邱閔卿,2013,「地質構造引致崩塌-以那次蘭集水區為例」,『中興工程』,(119),31-35。 16.詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生,2015,「台灣山區淺層崩塌地特性調查與分析 」,『中華水土保持學報』,46(1),19-28。 17.鍾明劍、譚志豪、陳勉銘、蘇泰維,2013,「以定率法評估邊坡山崩臨界雨量—以南勢坑為例」,『中華水土保持學報』,44(1),66-77。 18.顏愛靜、孫稚堤、陳亭伊,2016,「有機農業多功能性之研究 以新竹縣尖石鄉石磊部落為例」,『地理學報』,(82),59-86。 19.顏愛靜、陳亭伊,2011,「原住民傳統領域共同管理之研究以新竹縣尖石鄉泰雅族部落為例」,『地理學報』,(61),1-30。 20.顏愛靜、傅小芝、何欣芳,2011,「原住民社區永續農業發展之實踐─以新竹縣尖石鄉石磊部落自然農法為例」,『臺灣土地研究』,4(2),67-97。 21.顏愛靜、羅恩加、陳胤安,2012,「誘因排擠與原住民部落農業之發展—以臺灣新竹尖石鄉石磊部落為例」,『地理學報』,(65),53-78。 22.羅恩加、日宏煜,2015,「當代自然農業中的靈恩工作:以泰雅族石磊部落的農耕經驗為例 」,『臺灣宗教研究』,14(2),95-120。 |
Description: | 碩士 國立政治大學 地政學系 111257012 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111257012 |
Data Type: | thesis |
Appears in Collections: | [地政學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
701201.pdf | 8006Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|