English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50954671      Online Users : 970
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/144729


    Title: 無預處理深度學習之生物辨識認證系統於數位圖書館
    Authentication System of Biometrics without Preprocessing Deep Learning in Digital Library
    Authors: 李正吉;林聖邦;李崇瑋
    Lee, Cheng-chi;Lin, Shang-bang;Li, Chung-wei
    Contributors: 圖資與檔案學刊
    Keywords: 數位圖書館;卷積神經網路;深度學習;指靜脈辨識;預處理
    Digital library;Convolutional neural networks;Deep learning;Finger-vein recognition;Preprocessing
    Date: 2022-06
    Issue Date: 2023-05-19 14:04:51 (UTC+8)
    Abstract: 隨著科技與網路的快速發展,有許多傳統圖書館結合資訊科技邁向圖書館數位化。但目前數位圖書館在認證使用者方面,大多以帳號密碼登入為主,可能有資訊安全上的疑慮。目前指靜脈辨識技術已在多個地方實際運用,如能把指靜脈辨識技術運用在登入數位圖書館上,將能提高閱覽時的安全性,又能增加便利性。目前在指靜脈辨識上大多是先將圖片預處理,凸顯特徵後再去做指靜脈辨識,過程繁瑣。因此本研究實驗是使用不經過預處理的圖像,讓深度學習模型辨識指靜脈圖像,藉此減少預處理過程。我們使用SDUMLA與FV-USM資料庫的指靜脈圖像資料做測試實驗,測試ImageNet LSVRC圖像分類大賽中較出名的深度學習模型。實驗結果比較不同模型的辨識度,最後以ResNet的辨識度最高。
    With the rapid development of technology and Internet, many traditional libraries are moving towards digitization by integrating information technology. However presently most digital libraries rely on account and password log-in to authenticate users, thus there may be some concerns about information security. At present, finger vein identification technology has been applied in many fields. If this technology can be applied to access digital libraries, it will improve the security and convenience of reading. Currently, most features identified by digital vein identification is excuted after image preprocessing, which is a complicated process. Therefore, in this study, images without preprocessing were used to enable the deep learning model to identify the images of finger veins, thus reducing the preprocessing process. We used the digital vein image data from SDUMLA and FV-USM database to do test experiments to investigate the well-known deep learning model in ImageNet LSVRC image classification competition. The identifications of different models were compared among experimental results, and ResNet has the highest identification.
    Relation: 圖資與檔案學刊, 100, 1-29
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6575/JILA.202206_(100).0001
    DOI: 10.6575/JILA.202206_(100).0001
    Appears in Collections:[圖資與檔案學刊] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2178View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback